Численные методы: решение нелинейных уравнений. Решение систем нелинейных уравнений Решение простейших нелинейных систем

Исследование различных явлений или процессов математическими методами осуществляется с помощью математической модели. Математическая модель представляет собой формализованное описание исследуемого объекта посредством систем линейных, нелинейных или дифференциальных уравнений, систем неравенств, определенного интеграла, многочлена с неизвестными коэффициентами и т. д. Математическая модель должна охватывать важнейшие характеристики исследуемого объекта и отражать связи между ними.

После того, как математическая модель составлена, переходят к постановке вычислительной задачи. При этом устанавливают, какие характеристики математической модели являются исходными (входными)данными, какие - параметрами модели, а какие - выходными данными. Проводится анализ полученной задачи с точки зрения существования и единственности решения.

На следующем этапе выбирается метод решения задачи. Во многих конкретных случаях найти решение задачи в явном виде не представляется возможным, так как оно не выражается через элементарные функции. Такие задачи можно решить лишь приближенно. Под вычислительными (численными) методами подразумеваются приближенные процедуры, позволяющие получать решение в виде конкретных числовых значений. Вычислительные методы, как правило, реализуются на ЭВМ. Для решения одной и той же задачи могут быть использованы различные вычислительные методы, поэтому нужно уметь оценивать качество различных методов и эффективность их применения для данной задачи.

Затем для реализации выбранного вычислительного метода составляется алгоритм и программа для ЭВМ. Современному инженеру важно уметь преобразовать задачу к виду, удобному для реализации на ЭВМ и построить алгоритм решения такой задачи.

В настоящее время широко используются как пакеты, реализующие наиболее общие методы решения широкого круга задач (например, Mathcad ,
MatLAB), так и пакеты, реализующие методы решения специальных задач.

Результаты расчета анализируются и интерпретируются. При необходимости корректируются параметры метода, а иногда математическая модель, и начинается новый цикл решения задачи.

1.1. Постановка задачи

Пусть дана некоторая функция и требуется найти все или некоторые значения , для которых .

Значение , при котором , называется корнем (или решением ) уравнения. Относительно функции часто предполагается, что дважды непрерывно дифференцируема в окрестности корня.

Корень уравнения называется простым, если первая производная функции в точке не равна нулю, т. е. . Если же , то корень называется кратным корнем.

Геометрически корень уравнения есть точка пересечения графика функции с осью абсцисс. На рис. 1 изображен график функции , имеющей четыре корня: два простых и два кратных .


Большинство методов решения уравнения ориентировано на отыскание простых корней.

1.2. Основные этапы отыскания решения

В процессе приближенного отыскания корней уравнения обычно выделяют два этапа: локализация (или отделение) корня и уточнение корня .

Локализация корня заключается в определении отрезка , содержащего один и только один корень. Не существует универсального алгоритма локализации корня. Иногда удобно бывает локализовать корень с помощью построения графика или таблицы значений функции . На наличие корня на отрезке указывает различие знаков функции на концах отрезка. Основанием для этого служит следующая теорема.

Теорема. Если функция непрерывна на отрезке и принимает на его концах значения разных знаков так что , то отрезок содержит по крайней мере один корень уравнения.

Однако корень четной кратности таким образом локализовать нельзя, так как в окрестности такого корня функция имеет постоянный знак. На этапе уточнения корня вычисляют приближенное значение корня с заданной точностью . Приближенное значение корня уточняют с помощью различных итерационных методов. Суть этих методов состоит в последовательном вычислении значений , которые являются приближениями к корню .

1.3. Метод половинного деления

Метод половинного является самым простым и надежным способом решения нелинейного уравнения. Пусть из предварительного анализа известно, что корень уравнения находится на отрезке , т. е. , так, что . Пусть функция непрерывна на отрезке и принимает на концах отрезка значения разных знаков, т.е. .

Разделим отрезок пополам. Получим точку . Вычислим значение функции в этой точке: . Если , то - искомый корень, и задача решена. Если , то - число определённого знака: либо . Тогда либо на концах отрезка , либо на концах отрезка значения функции имеют разные знаки. Обозначим такой отрезок . Очевидно, что и длина отрезка в два раза меньше, чем длина отрезка . Поступим аналогично с отрезком . В результате получим либо корень , либо новый отрезок и т. д. (рис. 2).

Середина -го отрезка . Очевидно, что длина отрезка будет равна , а так как , то

Критерий окончания. Из соотношения (1) следует, что при заданной точности приближения вычисления заканчиваются, когда будет выполнено неравенство или неравенство . Таким образом, количество итераций можно определить заранее. За приближенное значение корня берется величина .

Пример. Найдем приближенно с точностью . Эта задача эквивалентна решению уравнения , или нахождению нуля функции . В качестве начального отрезка возьмем отрезок . На концах этого отрезка функция принимает значения с разными знаками: . Найдем число делений отрезка , необходимых для достижения требуемой точности. Имеем:

Следовательно, не позднее 6-го деления найдем с требуемой точностью, . Результаты вычислений представлены в таблице 1.

Таблица 1

1,0000 1,0000 1,0000 1,1250 1,1250 1,1406 1,1406
2,0000 1,5000 1,2500 1,2500 1,1875 1,1875 1,1562
1,5000 1,2500 1,1250 1,1875 1,1406 1,1562 1,1484
Зн - - - - - - -
Зн + + + + + + +
5,5938 0,7585 -0,2959 0,1812 -0,0691 0,0532 -0,0078
- 1,0000 0,5000 0,2500 0,1250 0,0625 0,0312 0,0156

1.4. Метод простой итерации

Пусть уравнение можно заменить эквивалентным ему уравнением

Выберем каким-либо образом начальное приближение . Вычислим значение функции при и найдем уточненное значение . Подставим теперь в уравнение (1) и получим новое приближение и т. д. Продолжая этот процесс неограниченно, получим последовательность приближений к корню:

Формула (3) является расчетной формулой метода простой итерации.

Если последовательность сходится при , т. е. существует

и функция непрерывна, то, переходя к пределу в (3) и учитывая (4), получим: .

Таким образом, , следовательно, - корень уравнения (2).

Сходимость метода. Сходимость метода простой итерации устанавливает следующая теорема.

Теорема. Пусть функция определена и диффе-ренцируема на отрезке , причем все ее зна-чения . Тогда, если выполняется условие при :

1) процесс итерации сходится независимо от начального значения ;

2) предельное значение является единственным корнем уравнения на отрезке .

Доказательство. Так как и , то можно записать

По теореме о среднем (она утверждает, что если производная функции непрерывна на некотором интервале, то тангенс угла наклона хорды, проведенной между точками и , (т.е. равен производной функции в некоторой промежуточной точке, лежащей между и ) частное в последнем выражении будет равно , где - некоторая промежуточная точка в интервале поиска корня. Следовательно, .

Если ввести обозначение для всего интервала поиска, то предыдущее равенство может быть переписано в виде:

Аналогично . Тогда для будет справедливо неравенство: и т. д. Продолжая эти выкладки дальше, в результате получаем , где - натуральное число. Таким образом, чтобы метод сходился, необходимо выполнение неравенства: .

Отсюда следует, что должно быть меньше единицы. В свою очередь, для всех остальных значений меньших , можно записать: . Число определим из соотношения . Тогда справедливо неравенство (вывод см. ниже): . Если поставить условие, что истинное значение корня должно отличаться от приближенного значения на величину , т.е. , то приближения надо вычислять до тех пор, пока не будет выполнено неравенство

или и тогда .

Вывод неравенства.Рассмотрим два последовательных приближения: и . Отсюда .

Используя теорему о среднем, получим:

тогда на основании условия можно записать:

С другой стороны, пусть . Очевидно, что . Отсюда, учитывая, что , получим

Тогда или .

Используя предыдущую формулу, можно получить:

Перейдём к пределу в равенстве (3), в силу непрерывности функции получим , то есть - корень уравнения (2). Других корней на нет, так как если , то , тогда , где . Равенство нулю будет достигнуто, если . То есть - корень единственный.

Теорема доказана.

Приведение уравнения к виду
для обеспечения выполнения неравенства

В общем случае получить подходящую итерационную форму возможно, проведя равносильное преобразование исходного уравнения, например, умножив его на коэффициент : . Прибавив затем к обеим частям уравнения и обозначив можно потребовать выполнения достаточного условия . Отсюда определяется необходимое значение . Так как условие должно выполняться на всем отрезке , то для выбора следует использовать наибольшее значение на этом отрезке, т.е.

Это соотношение определяет диапазон значений коэффициента , изменяющий величину в пределах .

Обычно принимают .

На рис. 3-6 показаны четыре случая взаимного расположения линий и и соответствующие итерационные процессы. Рис. 3 и 4 соответствуют случаю , и итерационный процесс сходится. При этом, если (рис. 3), сходимость носит односторонний характер, а если (рис. 4), сходимость носит двусторонний, колебательный характер. Рис. 5 и 6 соответствуют случаю - итерационный процесс расходится. При этом может быть односторонняя (рис. 5) и двусторонняя (рис. 6) расходимость.

Погрешность метода. Оценка погрешности была доказана (5).

Критерий окончания. Из оценки (5) следует, что вычисления надо продолжать до выполнения неравенство . Если же , то оценка упрощается: .

Пример 1. Используем метод простой итерации для решения уравнения с точностью . Преобразуем уравнение к виду:

, т. е. .

Нетрудно убедиться, что корень уравнения находится на отрезке . Вычислив значения на концах отрезка, получим: , а , т. е. функция на концах отрезка имеет разные знаки,

поэтому внутри отрезка есть корень. Расположение корня наглядно иллюстрирует рис. 7.

Подсчитаем первую и вторую производные функции :

Так как на отрезке , то производная монотонно возрастает на этом отрезке и принимает максимальное значение на правом конце отрезка, т. е. в точке . Поэтому справедлива оценка:

Таким образом, условие выполнено, и можно воспользоваться критерием окончания вычислений. В табл. 2 приведены приближения, полученные по расчетной формуле. В качестве начального приближения выбрано значение .

Таблица 2

0,8415 0,8861 0,8712 0,8774 0,8765

Критерий окончания выполняется при , . Сходимость двусторонняя, качественный характер такой сходимости представлен на рис. 4. Приближенное значение корня с требуемой точностью .

Пример 2. Решить методом простой итерации уравнение на отрезке с точностью 0,025. Для решения исходное уравнение приводится к виду . Для выбора величины используем приведенную выше формулу . Тогда расчетная формула имеет вид . В качестве начального приближения можно выбрать верхнюю границу заданного отрезка .

0,8 0,78

Так как , то .

1.5. Метод Ньютона (метод касательных)

Метод Ньютона является наиболее эффективным методом решения нелинейных уравнений. Пусть корень , т. е. . Предполагаем, что функция непрерывна на отрезке и дважды непрерывно дифференцируема на интервале . Положим . Проведем касательную к графику функции в точке (рис. 8).

Уравнение касательной будет иметь вид: .

Первое пересечение получим, взяв абсциссу точки пересечения этой касательной с осью , т. е. положив : .

Аналогично поступим с точкой , затем с точкой и т. д., в результате получим последовательность приближений , причем

Формула (6) является расчетной формулой метода Ньютона .

Метод Ньютона можно рассматривать как частный случай метода простых итераций, для которого .

Сходимость метода . Сходимость метода Ньютона устанавливает следующая теорема.

Теорема. Пусть - простой корень уравнения и в некоторой окрестности этого корня функция дважды непрерывно дифференцируема. Тогда найдется такая малая - окрестность корня , что при произвольном выборе начального приближения из этой окрестности итерационная последовательность, определенная по формуле (6) не выходит за пределы этой окрестности и справедлива оценка:

Сходимость метода Ньютона зависит от того, насколько близко к корню выбрано начальное приближение.

Выбор начального приближения. Пусть - отрезок, содержащий корень. Если в качестве начального приближения выбрать тот из концов отрезка, для которого , то итерации (6) сходятся, причем монотонно. Рис. 8 соответствует случаю, когда в качестве начального приближения был выбран правый конец отрезка: (Здесь ).

Погрешность метода. Оценка (7) неудобна для практического использования. На практике пользуются следующие оценки погрешности:

Критерий окончания. Оценка (8) позволяет сформулировать следующий критерий окончания итераций метода Ньютона. При заданной точности вычисления нужно вести до тех пор, пока не будет выполнено неравенство

Пример . Вычислить методом Ньютона отрицательный корень уравнения с точностью до 0,0001. Проведя отделение корня, можно убедиться, что корень локализован на интервале . В этом интервале и . Так как и , то за начальное приближение можно принять .

-11 -5183 0,6662
-10,3336 307,3 4276,8 0,0718
-10,2618 3,496 4185,9 0,0008
-10,261 0,1477 - -

. Поэтому . Итак, в результате получаем следующее, и на , поэтому .

Так как , то

Задание:

1) Используя метод итераций, решить систему

2) Используя метод Ньютона, решить систему

нелинейных уравнений с точностью до 0,001.

Задание №1Используя метод итераций, решить систему нелинейных уравнений с точностью до 0,001.

Теоретическая часть.

Метод итераций э то способ численного решения математических задач. Его суть – нахождение алгоритма поиска по известному приближению (приближенному значению) искомой величины следующего, более точного приближения. Применяется в случае, когда последовательность приближений по указанному алгоритму сходится.

Данный метод называют также методом последовательных приближений, методом повторных подстановок, методом простых итераций и т.п.

Метод Ньютона , алгоритм Ньютона (также известный как метод касательных) - это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643-1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Улучшением метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить нуль первой производной либо градиента в случае многомерного пространства. Обоснование

Чтобы численно решить уравнение методом простой итерации, его необходимо привести к следующей форме: , где - сжимающее отображение.

Для наилучшей сходимости метода в точке очередного приближения должно выполняться условие . Решение данного уравнения ищут в виде , тогда:

В предположении, что точка приближения «достаточно близка» к корню , и что заданная функция непрерывна , окончательная формула для такова:

С учётом этого функция определяется выражением:

Эта функция в окрестности корня осуществляет сжимающее отображение, и алгоритм нахождения численного решения уравнения сводится к итерационной процедуре вычисления:

.

Варианты заданий

№1. 1)
2)

№2. 1)
2)

№3. 1)
2)

№4. 1)
2)

№5. 1)
2)

№6. 1)
2)

№7. 1)
2)

№8. 1)
2)

№9. 1)
2)

№10.1)
2)

№11.1)
2)

№12.1)
2)

№13.1)
2)

№14.1)
2)

№15.1)
2)

№16.1)
2)

№17.1)
2)

№18.1)
2)

№19.1)
2)

№20.1)
2)

№21. 1)
2)

№22. 1)
2)

№23. 1)
2)

№24. 1)
2)

№25. 1)
2)

№26. 1)
2)

№27. 1)
2)

№28. 1)
2)

№29. 1)
2)

№30. 1)
2)

Образец выполнения задания

№1. 1)
2)

Пример решения системы нелинейных уравнений методом итераций



Перепишем данную систему в виде:

Отделение корней производим графически (рис.1). Из графика видим, что система имеет одно решение, заключенное в области D: 0<х <0,3;-2,2<y <-1,8.

Убедимся в том, что метод итераций применим для уто­чнения решения системы, для чего запишем ее в следующем виде:

Так как ,то имеем в области D

+ = ;

+ =

Таким образом, условия сходимости выполняются.

Таблица №2

п
0,15 -2 -0,45 -0,4350 -0,4161 -0,1384
0,1616 -2,035 -0,4384 -0,4245 -0,4477 -0,1492
0,1508 -2.0245 -0,4492 -0,4342 -0,4382 -0,1461
0.1539 -2,0342. -0,4461 -0.4313 -0,4470 -0,1490
0.1510 -2,0313 -0,4490 -0,4341 -0,4444 -0.1481
0,1519 -2,0341 -0,4481 -0,4333 -0,4469 -0,1490
0,1510 -2.0333 -0.449 -0,4341 -0.4462 -0,1487
0.1513 -2.0341 -0,4487 -0,4340 -0,4469 -0.1490
0.1510 -2,0340

За начальные приближения принимаем х о =0,15, у 0 = -2.

(таб.№2). Тогда ответ запишется:

Пример решения системы нелинейных уравнений методом Ньютона

Отделение корней производим графически (рис.2). Для построения графиков функций составим таблицу значений функций и , входящих в первое и второе уравнения (табл. I).

Значения для x можно брать исходя из следующих условий: из первого уравнения 1≤1,2х+0,4≤1 , т.е. 1,16≤х≤0,5 ; из второго уравнения , т.е. . Таким образом, .

Система имеет два решения. Уточним одно из них, принадлежащее области D: 0,4<x <0,5;

0,76<y <0,73. За начальное приближение примем Имеем:


Таблица №3

x -1,1 -1 -0,8 -0,6 -0,2 -0,4 0,2 0,4 0,5
х 2 1.21 0,64 0,36 0,04 0,16 0,04 0.16 0,25
0,8 х 2 0,97 0,8 0,51 0,29 0,032 0,13 0,032 0,13 0,2
1 -0,8 х 2 0,03 0,2 0,49 0,71 0,97 0,87 0,97 0.87 0,8
0,02 0,13 0,33 0,47 0,65 0,58 0,67 0,65 0,58 0.53
±0,14 ±0,36 ±0,57 ±0,69 ±0,81 ±0,76 ±0,82 ±0.81 ±0,76 ±0.73
1,2x -1,32 -1,2 -0,9б" -0,72 -0,24 -0,48 0,24 0,48 0,6
0,4+1,2x -0,92 -0,8 -0,56 -0,32 0,16 -0,08 0,4 0,64 0.88
2x-y -1.17 -0,93 -0,59 -0,33 0,16 -0,08 0,41 0,69 2.06 1,08 1,57
-1,03 -1,07 -1,01 -0,87 -0,56 -0,72 -0,41 -0,29 -1,26 -1,28 -0.57

Уточнение корней проводим методом Ньютона:



где ; ;


;
;


Все вычисления производим по таблице 3

Таблица 3 0,10 0,017 -0,0060 0,0247 -0,0027 -0,0256 0,0001 0,0004
0,2701 0,0440 -0,0193 0,0794 -0,0080 -0,0764 -0,0003 0,0013
2,6197 3,2199 2,9827 3,1673
-0,0208 -2,25 0,1615 -2,199 0,1251 -2,1249 0,1452 -2,2017
-1,1584 0,64 -1,523 0,8 -1,4502 0,7904 -1,4904 0,7861
0,1198 -0,0282 -0,0131 0,059 -0,0007 -0,0523 -0,0002 0,0010
0,9988 0,0208 0,9869 -0,1615 0,9921 -0,1251 -0,9894 -0,1452
0,55 0,733 1,6963 1,7165
0,128 0,8438 0,2 0,8059 0,1952 0,7525 0,1931 0,8079
0,4 0,75 0,50 -0,733 0,4940 -0,7083 0,4913 -0,7339 0,4912 -0,7335 Ответ: x ≈0,491 y ≈ 0,734
n

Контрольные вопросы

1) Представьте на графике возможные случаи решения системы двух нелинейных уравнений.

2) Сформулируйте постановку задачи о решении системы n-линейных уравнений.

3) Приведите итерационные формулы метода простой итерации в случае системы двух нелинейных уравнений.

4) Сформулируйте теорему о локальной сходимости метода Ньютона.

5) Перечислите трудности, возникающие при использовании метода Ньютона на практике.

6) Объяснить каким образом можно модифицировать метод Ньютона.

7) Изобразите в виде блок-схем алгоритм решения систем двух нелинейных уравнений методами простой итерации и Ньютона.


Лабораторная работа №3

Назначение сервиса . Онлайн-калькулятор предназначен для отыскания корней уравнения методом итераций .

Решение оформляется в формате Word .

Правила ввода функции

Примеры
≡ x^2/(1+x)
cos 2 (2x+π) ≡ (cos(2*x+pi))^2
≡ x+(x-1)^(2/3)

Одним из наиболее эффективных способов численного решения уравнений является метод итерации . Сущность этого метода заключается в следующем. Пусть дано уравнение f(x)=0 .
Заменим его равносильным уравнением
Выберем начальное приближение корня x 0 и подставим его в правую часть уравнения (1). Тогда получим некоторое число

x 1 =φ(x 0). (2)


Подставляя теперь в правую часть (2) вместо x 0 число x 1 получим число x 2 =φ(x 1). Повторяя этот процесс, будем иметь последовательность чисел

x n =φ(x n-1) (n=1,2..). (3)


Если эта последовательность сходящаяся, то есть существует предел , то переходя к пределу в равенстве (3) и предполагая функцию φ(x) непрерывной найдем

Или ξ=φ(ξ).
Таким образом, предел ξ является корнем уравнения (1) и может быть вычислен по формуле (3) с любой степенью точности.


Рис. 1а Рис. 1б


Рис. 2.

|φ′(x)|>1 - расходящийся процесс

На рис.1а, 1б в окрестности корня |φ′(x)|<1 и процесс итерации сходится. Однако, если рассмотреть случай |φ′(x)|>1, то процесс итерации может быть расходящимся (см. рис.2).

Достаточные условия сходимости метода итерации

Теорема 7. Пусть функция φ(x) определена и дифференцируема на отрезке , причем все ее значения φ(x)∈ и пусть |φ′(x)|≤q<1 при x∈. Тогда процесс итерации x n = φ(x n -1) сходится независимо от начального значения x 0 ∈ и предельное значение является единственным корнем уравнения x= φ(x) на отрезке .
Доказательство: Рассмотрим два последовательных приближения x n = φ(x n -1) и x n +1 = φ(x n) и возьмем их разность x n+1 -x n =φ(x n)-φ(x n-1). По теореме Лагранжа правая часть может быть представлена как

φ′(x n)(x n -x n-1)

Где x n ∈
Тогда получим

|x n+1 -x n |≤φ′(x n)|x n -x n-1 |≤q|x n -x n-1 |


Полагая n=1,2,...

|x 2 -x 1 |≤q|x 1 -x 0 |
|x 3 -x 2 |≤q|x 2 -x 1 |≤q²|x 1 -x 0 |
|x n+1 -x n ≤q n |x 1 -x 0 | (4)


Из (4) в силу условия q<1 видно, что последовательность {x n } сходится к некоторому числу ξ, то есть , и следовательно,
(в силу непрерывности функции φ(x))
или ξ= φ(ξ) ч.т.д.
Для погрешности корня ξ можно получить следующую формулу.
Имеем x n =φ(x n-1).
Далее ξ-x n =ξ-φ(x n-1) = φ(ξ)-φ(x n-1) →
Теперь φ(x n-1)=φ(x n)-φ′(c)(x n -x n-1) →
φ(ξ)-φ(x n)+φ′(c)(x n -x n-1)
В результате получим

ξ-x n = φ′(c 1)(ξ-x n-1)+φ′(c)(x n -x n-1)
или
|ξ-x n |≤q|ξ-x n |+q|x n -x n-1 |


Отсюда

, (5)


откуда видно, что при q близком к 1 разность |ξ -x n | может быть очень большой несмотря на то что |x n -x n -1 |<ε, где ε-заданная величина. Для того, чтобы вычислить ξ с точностью ε необходимо обеспечить

. (6)


Тогда подставляя (6) в (5), получим |ξ -x n |<ε.
Если q очень мало, то вместо (6) можно использовать

|x n -x n -1 |<ε

Сходимость метода итерации линейная с коэффициентом сходимости α=q. Действительно, имеем
ξ-x n =φ(ξ)-φ n-1 = φ′(c)·(ξ-x n-1), отсюда |ξ-x n |≤q·|ξ-x n-1 |.

Замечание. Пусть в некоторой окрестности корня ξ∈(a,b) уравнения x= φ(x) производная φ’(x) сохраняет постоянный знак и выполнено неравенство |φ’(x)|≤q<1. Тогда, если φ’(x) положительна, то последовательные приближения x n = φ(x n -1) сходятся к корню монотонно.
Если же φ’(x) отрицательна, то последовательные приближения колеблются около корня.
Рассмотрим способ представления уравнения f(x)=0 в форме x= φ(x).
Функцию φ(x) необходимо задать такую, чтобы |φ’(x)| была малой величиной в окрестности корня.
Пусть известно m 1 и M 1 - наименьшее и наибольшее значения производной f’(x)
0Заменим уравнение f(x)=0 эквивалентным ему уравнением
x = x - λf(x).
Положим φ(x) = x- λf(x). Подберем параметр λ таким образом, чтобы в окрестности корня ξ выполнялось неравенство

0≤|φ′(x)|=|1-λ·f′(x)|≤q≤1


Отсюда на основании (7) получаем

0≤|1-λM 1 |≤|1-λm 1 |≤q


Тогда выбирая λ = 1/M 1 , получим
q = 1-m 1 /M 1 < 1.
Если λ =1/f’(x), то итерационная формула x n = φ(x n -1) переходит в формулу Ньютона

x n = x n -1 – f(x n)/f’(x).

Метод итераций в Excel

В ячейку B2 заносим начало интервала a , в ячейку B3 заносим конец интервала b . Строку 4 отводим под заголовок таблицы. Сам процесс итераций организуем в ячейках A5:D5 .

Процесс нахождения нулей функции методом итераций состоит из следующих этапов:

  1. Получить шаблон с омощью этого сервиса.
  2. Уточнить интервалы в ячейках B2 , B3 .
  3. Копировать строки итераций до требуемой точности (столбец D).
Примечание : столбец A - номер итерации, столбец B - корень уравнения X , столбец C - значение функции F(X) , столбец D - точность eps .

Пример . Найти корень уравнения e -x -x=0, x=∈, ε=0.001 (8)
Решение .
Представим уравнение (8) в форме x=x-λ(e -x -x)
Найдем максимальное значение производной от функции f(x)= e - x -x.
max f′(x)=max(-(e -x +1)) ≈ -1.37. Значение . Таким образом, решаем следующее уравнение
x=x+0,73(e - x -x)
Значения последовательных приближений даны в таблице.

n x i f(x i)
1 0.0 1.0
2 0.73 -0.2481
3 0.5489 0.0287
4 0.5698 -0.0042
5 0.5668 0.0006

Кафедра физхимии ЮФУ (РГУ)
ЧИСЛЕННЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ
Материалы к лекционному курсу
Лектор – ст. преп. Щербаков И.Н.

Системы нелинейных уравнений

При решении задач моделирования поведения химических систем достаточно часто приходится решать системы уравнений, нелинейных по отношению к переменным. Системы n линейных уравнений с n неизвестными x 1 , x 2 , ..., x n в общем случае принято записывать следующим образом:

где F 1 , F 2 ,…, F n – любые функции независимых переменных, в том числе и нелинейные относительно неизвестных.

Как и в случае систем линейных уравнений, решением системы является такой вектор (или векторы) (X * ) , который при подстановке обращает одновременно все уравнения системы в тождества.

Система уравнений может не иметь решений, иметь единственное решение, конечное или бесконечное количество решений. Вопрос о количестве решений должен решаться для каждой конкретной задачи отдельно.

Рассмотрим несколько простейших итерационных методов решения систем нелинейных уравнений, а именно, метод простой итерации, метод Зейделя и метод Ньютона.

Метод простой итерации

Для реализации этого метода решаемую систему уравнений необходимо путем алгебраических преобразований привести к следующему виду, выразив из каждого уравнения по одной переменной следующим образом:

Выбирая затем вектор начального приближения

подставляют его в преобразованную систему уравнений. Из первого уравнения получают новое приближение к первой переменной, из второго – второй и т. д. Полученное уточненное значение переменных снова подставляют в эти уравнения и т.д.Таким образом, на (i+1 ) -м шаге итерационной процедуры имеем

Метод Зейделя

Модификация Зейделя алгоритма простой итерации заключается в использовании уточненных значений переменных уже на текущем итерационном шаге. Так, для уточнения значений первой переменной используются только значения предыдущего шага, для второй переменной – значение x 1 текущего шага, а остальных – от предыдущего и т.д.:

Метод Ньютона-Рафсона

Математической основой метода является линеаризация функций F 1 , F 2 , F n (левых частей уравнений, образующих ) путем разложения в ряд Тейлора в окрестности точки начального приближения к решению и пренебрежением всеми членами ряда кроме линейных относительно приращений переменных.

Рассмотрим метод на примере системы двух уравнений с двумя неизвестными:

Линеаризуем функции F 1 , F 2 путем разложения в ряд Тейлора вблизи некоторой точки (начального приближения) и пренебрежения всеми членами ряда кроме линейных относительно приращений переменных.

Вспомним, что для функции одной переменной разложение в ряд Тейлора в окрестности некоторой точки x 0 имеет следующий вид:

после пренебрежения всеми членами, кроме линейного:

Для функции нескольких переменных разложение проводится аналогично.

Выберем для поиска решения системы уравнений некоторое начальное приближение

Запишем для функции F 1 2-х переменных линейную часть разложения в ряд Тейлора в окрестности выбранной точки

для второго уравнения, аналогично

Если значения переменных x 1 и x 2 являются решением, то оба уравнения системы должны обратиться в ноль, поэтому полученные разложения приравниваем нулю.

Для краткости записи введем следующие обозначения:

Приращение i -ой переменной

Значение первой частной производной функции F j по переменной x i при значении переменных

– значение j -ой функции при соответствующих значениях переменных, то есть невязка j ‑го уравнения.

Получим систему линейных уравнений 2 x 2 относительно приращения переменных

Или, в матричной форме,

где матрица значений частных производных называется матрицей Якоби (или якобианом ). Решение этой системы дает вектор поправок к начальному приближению.

Сложение его с вектором начального приближения дает новые значения переменных.

Таким образом, процедура решения выглядит следующим образом:

1. Выбирается начальное приближение, система приводится к нормальному виду, в аналитическом виде находятся частные производные правых частей уравнений системы по всем переменным.

2. Рассчитывается матрица Якоби значений частных производных в точке начального приближения

3. Решается система линейных уравнений относительно приращений переменных.

4. к вектору начального приближения прибавляется вектор приращений

5. проверяется условие сходимости и, если оно не достигнуто, то процедура повторяется с п. 2.

Метод легко обобщается на систему уравнений любой размерности.

Для функции F 1 n переменных линейная часть разложения в ряд Тейлора в окрестности точки записывается так

После разложения всех уравнений системы и используя введенные ранее обозначения, после преобразования получим систему линейных уравнений порядка n относительно приращения переменных Δ x i

Или, в матричной форме,

В сокращенном виде можно записать так - (F" )(Δ x ) = - (F ) , где матрица значений частных производных – (F" ) – называется матрицей Якоби или якобианом системы уравнений.

Решение этой системы дает вектор поправок к начальному приближению. Сложение его с вектором начального приближения дает новые, уточненные значения переменных.

Частные производные, необходимые для расчета матрицы Якоби , можно рассчитать аналитически или же, если это невозможно или затруднительно, получать по формулам приближенного дифференцирования, например, как отношение приращения функции к приращению аргумента

где эпсилон – достаточно малое число.

Методы контроля сходимости итерационных методов
решения систем

Сходимость итерационного процесса решения системы нелинейных уравнений можно контролировать несколькими способами, например:

1. Норма (эвклидова или -максимум) вектора невязок

2. Эвклидова норма вектора относительных отклонений переменных

3. Норма-максимум вектора относительных отклонений

Применим метод Ньютона для решения системы уравнений

Матрица частных производных (в аналитическом виде)

Система линейных уравнений

Может быть решена аналитически или методом Крамера или методом обращения матрицы. Возьмем начальное приближение x = 0,15, y = 0,17

Первая итерация:

Матрица Якоби - вектор значений функции Рассчитанный вектор поправок Новое приближение x = 0,15 + 0,028704 = 0,178704, y = 0,17 + 0,090926 = 0,260926 Вторая итерация: Рассчитанный вектор поправок Новое приближение x = 0,196656, y = 0,293359 Третья итерация: Рассчитанный вектор поправок Новое приближение x = 0,199867, y = 0,299739 Уже на 6-й итерации эвклидова норма вектора невязок составляет 2.8∙10 -13 , максимальное относительное изменение переменных составляет 1.6∙10 -12 и решение сходится к x = 0.2, y = 0.3 с абсолютной погрешностью менее 5∙10 -7 . Метод простой итерации при этих же начальных условиях сходится с такой точностью на 33-м шаге, модификация Зейделя – на 31-м шаге. На рисунке ниже представлен пример организации вычислений при решении рассмотренной системы в программе MS Excel
Пояснения: В ячейки В3 и В4 помещены начальные приближения к решению системы (значения х 0 и у 0 , соответственно). В диапазоне ячеек D3:E4 помещены формулы для вычисления матрицы Якоби, при условии что х находится в ячейке В3, а у - в ячейке В4 (формулы приведены на рисунке ниже). В ячейках G3:G4 рассчитывается значение вектора невязок с отрицательным знаком.
В ячейке Н3 вычисляется эвклидова норма вектора невязок. В ячейках I3:I4 - решается система линейных уравнений и вычисляется вектор поправок к решению. Для этого обращается матрица коэффициентов системы (матрица Якоби) и умножается на вектор-столбец свободных членов (отрицательный вектор невязок). Формула в этот диапазон ячеек вводится как формула массива . Рядом - в ячейке J3 - рассчитывается норма вектора поправок для контроля сходимости (см. формулы на рисунке ниже).
Полученные в ячейках I3:I4 значения поправок на втором итерационном цикле прибавляются к начальному приближению (в ячейках В6:В7) и далее вычисления повторяются аналогично первому циклу. Набранные в строках 6 и 7 рабочего листа формулы могут копироваться до тех пор, пока не будет достигнута необходимая точность.

Задачи, сводящиеся к решению системы нелинейных уравнений

Примером задачи, в которой используется решение систем нелинейных уравнений, может служить аппроксимация таблично заданной функции математическими моделями, нелинейными по отношению к параметрам. Подробно она описывалась ранее . Если аппроксимирующую функцию и определяющие ее параметры a i обозначить следующим образом то условие прохождения графика функции через все таблично заданные точки можно записать в виде следующей системы: Другой пример - поиск экстремума (минимума или максимума) функции нескольких переменных Условием экстремума является одновременное равенство нулю всех частных производных функции. Таким образом, необходимо решить систему уравнений следующего вида, которая, в общем случае, будет нелинейной