Уравнением бернулли является уравнение. Дифференциальное уравнение бернулли и методы его решения

Дифференциальное уравнение вида , где , называется уравнением Бернулли.

Предполагая, что , разделим обе части уравнения Бернулли на . В результате получим: (8.1) Введем новую функцию . Тогда . Домножим уравнение (8.1) на и перейдем в нем к функции z(x) : , т.е. для функции z(x) получили линейное неоднородное уравнение 1-го порядка. Это уравнение решается методами, разобранными в предыдущем параграфе. Подставим в его общее решение вместо z(x) выражение , получим общий интеграл уравнения Бернулли, который легко разрешается относительно y . При добавляется решение y(x)=0 . Уравнение Бернулли можно также решать, не делая перехода к линейному уравнению путем подстановки , а применяя метод Бернулли.

Дифференциальные уравнения в полных дифференциалах.

Определение. Если в уравнении M(x,y)dx+N(x,y)dy=0 (9.1) левая часть есть полный дифференциал некоторой функции U(x,y) , то оно называется уравнением в полных дифференциалах. Это уравнение можно переписать в виде du(x,y)=0 , следовательно, его общий интеграл есть u(x,y)=c.

Например, уравнение xdy+ydx=0 есть уравнение в полных дифференциалах, так как его можно переписать в виде d(xy)=0. Общим интегралом будет xy=c.

Теорема. Предположим, что функции M и N определены и непрерывны в некоторой односвязной области D и имеют в ней непрерывные частные производные соответственно по y и по x . Тогда, для того, чтобы уравнение (9.1) было уравнением в полных дифференциалах, необходимо и достаточно, чтобы выполнялось тождество (9.2).

Доказательство. Доказательство необходимости этого условия очевидно. Поэтому докажем достаточность условия (9.2). Покажем, что может быть найдена такая функция u(x,y) , что и .

Действительно, поскольку , то (9.3) , где - произвольная дифференцируемая функция. Продифференцируем (9.3) по y: . Но , следовательно, .Положим и тогда .Итак, построена функция , для которой , а .

Интегрирующий множитель.

Если уравнение M(x,y)dx + N(x,y)dy = 0 не является уравнением в полных дифференциалах и существует функция µ = µ(x,y) , такая что после умножения на нее обеих частей уравнения получается уравнение

µ(Mdx + Ndy) = 0 в полных дифференциалах, т. е. µ(Mdx + Ndy)du , то функция µ(x,y) называется интегрирующим множителем уравнения. В случае, когда уравнение уже есть уравнение в полных дифференциалах, полагают µ = 1 .

Если найден интегрирующий множитель µ , то интегрирование данного уравнения сводится к умножению обеих его частей на µ и нахождению общего интеграла полученного уравнения в полных дифференциалах.

Если µ есть непрерывно дифференцируемая функция от x и y , то .

Отсюда следует, что интегрирующий множитель µ удовлетворяет следующему уравнению с частными производными 1-го порядка: (10.1). Если заранее известно, что µ= µ(ω) , где ω – заданная функция от x и y , то уравнение (10.1) сводится к обыкновенному (и притом линейному) уравнению с неизвестной функцией µ от независимой переменной ω : (10.2), где , т. е. дробь является функцией только от ω .

Решая уравнение (10.2), находим интегрирующий множитель , с = 1. В частности уравнение M(x,y)dx + N(x,y)dy = 0 имеет интегрирующий множитель, зависящий только от x (ω = x ) или только от y (ω = y ), если выполнены соответственно следующие условия: , или , .

10. Свойства решений ЛДУ II-го порядка (с док-вом). Линейное дифференциальное уравнение (ЛДУ) 2-го порядка имеет следующий вид: , (2.1)

где , , и – заданные функции, непрерывные на том промежутке, на котором ищется решение. Предполагая, что a 0 (x) ≠ 0, поделим (2.1) на и, после введения новых обозначений для коэффициентов, запишем уравнение в виде: (2.2)

Примем без доказательства, что (2.2) имеет на некотором промежутке единственное решение, удовлетворяющее любым начальным условиям , , если на рассматриваемом промежутке функции , и непрерывны. Если , то уравнение (2.2) называется однородным, и уравнение (2.2) называется неоднородным в противном случае. Рассмотрим свойства решений лоду 2-го порядка.

Определение. Линейной комбинацией функций называется выражение , где – произвольные числа.

Теорема. Если и – решение лоду , (2.3) то их линейная комбинация также будет решением этого уравнения.

Бернулли уравнение I Берну́лли уравне́ние

дифференциальное уравнение 1-го порядка вида:

dy/dx + Py = Qy α ,

где Р, Q - заданные непрерывные функции от x ; α - постоянное число. Введением новой функции z = y -- α+1 Б. у. сводится к линейному дифференциальному уравнению (См. Линейные дифференциальные уравнения) относительно z. Б. у. было рассмотрено Я. Бернулли в 1695, метод решения опубликован И. Бернулли в 1697.

II Берну́лли уравне́ние

основное уравнение гидродинамики (См. Гидродинамика), связывающее (для установившегося течения) скорость текущей жидкости v, давление в ней р и высоту h расположения малого объёма жидкости над плоскостью отсчёта. Б. у. было выведено Д. Бернулли в 1738 для струйки идеальной несжимаемой жидкости постоянной плотности ρ, находящейся под действием только сил тяжести. В этом случае Б. у. имеет вид:

v 2 / 2 + pl ρ + gh = const,

где g - ускорение силы тяжести. Если это уравнение умножить на ρ, то 1-й член будет представлять собой кинетическую энергию единицы объёма жидкости, а др. 2 члена - его потенциальную энергию, часть которой обусловлена силой тяжести (последний член уравнения), а др. часть - давлением p. Б. у. в такой форме выражает закон сохранения энергии. Если вдоль струйки жидкости энергия одного вида, например кинетическая, увеличивается, то потенциальная энергия на столько же уменьшается. Поэтому, например, при сужении потока, текущего по трубопроводу, когда скорость потока увеличивается (т.к. через меньшее сечение за то же время проходит такое же количество жидкости, как и через большее сечение), давление соответственно в нём уменьшается (на этом основан принцип работы расходомера Вентури).

Из Б. у. вытекает ряд важных следствий. Например, при истечении жидкости из открытого сосуда под действием силы тяжести (рис. 1 ) из Б. у. следует:

v 2 /2g = h или

т. е. скорость жидкости в выходном отверстии такова же, как при свободном падении частиц жидкости с высоты h.

Если равномерный поток жидкости, скорость которого v 0 и давление p 0 , встречает на своём пути препятствие (рис. 2 ), то непосредственно перед препятствием происходит подпор - замедление потока; в центре области подпора, в критической точке, скорость потока равна нулю. Из Б. у. следует, что давление в критической точке p 1 = p 0 + ρv 2 0 /2. Приращение давления в этой точке, равное p 1 - p 0 = ρv 2 0 /2, называется динамическим давлением, или скоростным напором. В струйке реальной жидкости её механическая энергия не сохраняется вдоль потока, а расходуется на работу сил трения и рассеивается в виде тепловой энергии, поэтому при применении Б. у. к реальной жидкости необходимо учитывать потери на сопротивление.

Б. у. имеет большое значение в гидравлике (См. Гидравлика) и технической гидродинамике: оно используется при расчётах трубопроводов, насосов, при решении вопросов, связанных с фильтрацией, и т.д. Бернулли уравнение для среды с переменной плотностью р вместе с уравнением неизменяемости массы и уравнением состояния является основой газовой динамики (См. Газовая динамика).

Лит.: Фабрикант Н.Я., Аэродинамика, ч. 1-2, Л.,1949- 64; Угинчус А. А., Гидравлика, гидравлические машины и основы сельскохозяйственного водоснабжения, К.-М., 1957, гл. V.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Бернулли уравнение" в других словарях:

    - (интеграл Бернулли) в гидроаэромеханике (по имени швейц. учёного Д. Бернулли (D. Bernoulli)), одно из осн. ур ний гидромеханики, к рое при установившемся движении несжимаемой идеальной жидкости в однородном поле сил тяжести имеет вид: где v… … Физическая энциклопедия

    Связывает скорость и давление в потоке идеальной несжимаемой жидкости при установившемся течении. Бернулли уравнение выражает закон сохранения энергии движущейся жидкости. Широко применяется в гидравлике и технической гидродинамике. Выведено Д.… … Большой Энциклопедический словарь

    В аэро и гидродинамике соотношение, связывающее газо или гидродинамические переменные вдоль линии тока установившегося баротропного течения идеальной жидкости или газа в потенциальном поле массовых сил F = grad(Π), где (Π) потенциал: (Π) + V2/2 + … Энциклопедия техники

    Связывает скорость и давление в потоке идеальной несжимаемой жидкости при установившемся течении. Уравнение Бернулли выражает закон сохранения энергии движущейся жидкости. Широко применяется в гидравлике и технической гидродинамике. Выведено… … Энциклопедический словарь

    Обыкновенное дифференциальное уравнение 1 го порядка где. действительное число, не равное нулю и единице. Это уравнение впервые было рассмотрено Я. Бернулли . Подстановкой Б. у. приводится к линейному неоднородному уравнению 1 го порядка (см.… … Математическая энциклопедия

    Бернулли уравнение Энциклопедия «Авиация»

    Бернулли уравнение - в аэро и гидродинамике — соотношение, связывающее газо или гидродинамические переменные вдоль линии тока установившегося баротропного [ρ = ρ(p)] течения идеальной жидкости или газа в потенциальном поле массовых сил (F = ‑gradΠ, где Π —… … Энциклопедия «Авиация»

    - [по имени швейц. учёного Д. Бернулли (D. Bernoulli; 1700 1782)] одно из осн. ур ний гидродинамики, выражающее закон сохранения энергии. 1) Б. у. для элементарной (с малым поперечным сечением) струйки идеальной жидкости: где р, РО и v статич.… … Большой энциклопедический политехнический словарь

    Связывает скорость и давление в потоке идеальной несжимаемой жидкости при установившемся течении. Б. у. выражает закон сохранения энергии движущейся жидкости. Широко применяется в гидравлике и техн. гидродинамике. Выведено Д. Бернулли в 1738 … Естествознание. Энциклопедический словарь

    Бернулли уравнение, основное уравнение гидродинамики, связывающее (для установившегося течения) скорость текущей жидкости v, давление в ней р и высоту h расположения малого объёма жидкости над плоскостью отсчёта. Б. у. было выведено Д. Бернулли в … Большая советская энциклопедия

Книги

  • Гидродинамика, или записки о силах и движениях жидкостей , Д. Бернулли. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В 1738 вышла в свет знаменитая работа Даниила Бернулли "Гидродинамика, или Записки о силах и…

Тема 7

Анализ и применение уравнения Бернулли

1. Уравнение неразрывности в гидравлике. Расход.

2. Анализ уравнения Бернулли.

3. Энергетический смысл уравнения Бернулли.

4. Предел применимости уравнения Бернулии.

5. Примеры применения уравнения Бернулли.

5.1. Расходомер Вентури.

5.2. Измерение скорости (Трубка Пито).

5.3. Кавитация.

5.4. Формула Торичелли.

6. Уравнение неразрывности в гидравлике. Расход.

7.1. Расход. Уравнение неразрывности в гидравлике

Рассмотрим установившийся поток между живыми сечениями 1,2 (рис. 26).

где - площадь живого сечения, - средняя скорость в сечении.

Через живое сечение 2 за это время вытекает объем жидкости

где - площадь живого сечения 2, - средняя скорость в сечении 2.

Поскольку форма объема 1-2 с течением времени не изменяется, жидкость несжимаемая, объем жидкости должен равняться объему вытекающему .

Поэтому можно записать

Это уравнение называется уравнением неразрывности .

Из уравнения неразрывности следует, что

Средние скорости обратно пропорциональны площадям соответствующих сечений.

7.2. Анализ уравнения Бернулли

Запишем уравнение Бернулли для установившегося движения идеальной сжимаемой жидкости при условии ее баротропности () в поле массовых сил

,

проинтегрировав имеем

.

Для потенциального течения константа уравнения Бернулли постоянна для всей области течения. При вихревом движении идеальной жидкости константа С в интеграле Бернулли сохраняет постоянное значение только для данной вихревой линии, а не для всего пространства, как при безвихревом течении.

Уравнение Бернулли является одним из основных в гидрогазодинамике, так как определяет изменение основных параметров течения - давления, скорости и высоты положения жидкости.

Проинтегрируем дифференциальное уравнение Бернулли для конечного участка струйки 1-2

.

Интеграл выражает работу сил давления по перемещению килограмма жидкости из области 1 с давлением р 1 в область 2 с давлением р 2 .

Значение интеграла изменяется зависимости от типа процесса (термодинамического) который совершает жидкость, то есть от вида зависимости .

Рассмотрим изобарный процесс (рис. 27)

При изохорном процессе

Для несжимаемой жидкости при течении без обмена механической работой с внешней средой, получим, при из уравнения Бернулли

,

или умножив на r

,

или разделив на r g

,

где константы имеют следующий физический смысл:

С - полная механическая энергия килограмма жидкости или полный напор , ,

Полная механическая энергия массы жидкости объёмом в кубический метр или полный напор , или Па. ,

- полная механическая энергия или полный напор в метрах столба данной жидкости.

Все три величины имеют одинаковый физический смысл любой из них присваивают название полного напора .

Составляющие полной механической энергии жидкости наиболее наглядно изображаются и измеряются в метрах столба жидкости,

gz, r gz, z - потенциальная энергия положения жидкости, отсчитываемая от произвольно выбранной горизонтальной нивелирной плоскости, или геометрический напор , ,

Потенциальная энергия давления жидкости или пьезометрический напор ,,

-потенциальная энергия жидкости или гидростатический напор ,,

- кинетическая энергия жидкости или скоростной напор , .

Пьезометрический напор р может измеряться от полного вакуума р=0 или, например, от давления окружающей среды. В обеих частях равенств должно подставляться абсолютное или избыточное давление.

Начало отсчета энергии произвольно, но должно быть одинаково для обеих частей равенств.

7.3. Энергетический смысл уравнения Бернулли

Заключается в утверждении закона сохранения полной механической энергии единицы массы несжимаемой жидкости

а) при потенциальном течении для любой точки пространства,

б) при вихревом - только вдоль вихревой линии тока и элементарной

Этот закон иногда формулируется в виде теоремы трех высот.

В приведенных условиях сумма трех высот - геометрической, пьезометрической и динамической сохраняет неизменное значение.

При этом составляющие полной энергии могут взаимопревращаться.

Следует иметь в виду, что изменение кинетической энергии несжимаемой жидкости вдоль элементарной струйки не может задаваться произвольно: в соответствии с уравнением неразрывности это изменение однозначно определяется изменением площади поперечного сечения канала

Течение в горизонтальной струйке имеет большое практическое значение, оно реализуется в соплах двигателей. Запишем уравнение Бернулли при z = const

.

Итак, увеличение скорости несжимаемой жидкости в горизонтальной элементарной струйке всегда сопровождается уменьшением давления, а уменьшение скорости – увеличением давления вплоть до при v= 0. Поэтому скоростной напор широко используется, например, для подачи воды в систему охлаждения, разрушения горных пород и т.д.

В связи с тем, что скорость несжимаемой жидкости может уменьшаться только вследствие изменения площади сечения, приходим к важному выводу о том, что картина линий тока при течении несжимаемой жидкости однозначно определяет не только изменение скорости, но и статического давления: при сгущении линий тока давление уменьшается, при расширении - увеличивается. Это правило широко используется при анализе движения жидкости и ее взаимодействии с телами.

7.4. Предел применимости уравнений неразрывности и Бернулли

При течении жидкости по каналу при постоянстве , и при произвольно изменяемой площади 2. Казалось бы, что

.

Однако по уравнению Бернулли при

,

давление должно было бы принять значение минус бесконечность, что лишено смысла: абсолютное давление не может быть меньше нуля.

Таким образом уравнения неразрывности и Бернулли справедливы лишь до тех пор, пока минимальное давление в потоке остается большим нуля.

Уравнение Бернулли для потока реальной жидкости, его физический смысл.

Уравнение Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Здесь — плотность жидкости, — скорость потока, — высота, на которой находится рассматриваемый элемент жидкости, — давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, — ускорение свободного падения.

В реальных потоках жидкости присутствуют силы вязкого трения. В результате слои жидкости трутся друг об друга в процессе движения. На это трение затрачивается часть энергии потока. По этой причине в процессе движения неизбежны потери энергии. Эта энергия, как и при любом трении, преобразуется в тепловую энергию. Из-за этих потерь энергия потока жидкости по длине потока, и в его направлении постоянно уменьшается.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.

Уравнение Бернулли для потока реальной жидкости

Распределение скоростей:

Что такое трубка Пито и для чего она служит?

Трубка Пито - прибор для измерения скорости в точках потока. для измерения динамического напора текущей жидкости или газа. Представляет собой Г-образную трубку. Установившееся в трубке избыточное давление приближённо равно: , где p — плотность движущейся (набегающей) среды; V?- скорость набегающего потока; ξ — коэффициент.

Напорная трубка Пито подключается к специальным приборам и устройствам. Применяется при определении относительной скорости и объёмного расхода в газоходах и вентиляционных системах в комплекте с дифференциальными манометрами.

Применяется как составная часть трубки Прандтля в авиационных приёмниках воздушного давления для возможности одновременного определения скорости и высоты полёта.


Как перевести уравнение Бернулли из размерности длин в размерность давлений?

Уравнение Бернулли в форме напоров, м

Уравнение Бернулли в форме давлений, Па

Потери давления от первого сечения до второго.

Какие существуют режимы течения и как определяются границы существования этих режимов?

1. Ламинарный режим движения. Особенности - слоистый характер течения жидкости, отсутствие перемешивания, неизменность давления и скорости по времени.

2. Переходный режим.

3. Турбулентный режим течения. Заметны: вихреобразование, вращательное движение жидкости, непрерывные пульсации давления и скорости в потоке воды.

1. Ламинарным называется слоистое течение без перемешивания частиц жидкости и без пульсации скорости и давления. При ламинарном течении жидкости в прямой трубе постоянного сечения все линии тока направлены параллельно оси трубы, при этом отсутствуют поперечные перемещения частиц жидкости.

2. Турбулентным называется течение, сопровождающееся интенсивным перемешиванием жидкости с пульсациями скоростей и давлений. Наряду с основным продольным перемещением жидкости наблюдаются поперечные перемещения и вращательные движения отдельных объемов жидкости. 3. Переход от ламинарного режима к турбулентному наблюдается при определенной скорости движения жидкости. Эта скорость называется критической (Vкр=kv/d) .

Значение этой скорости прямо пропорционально кинематической вязкости жидкости v и обратно пропорционально диаметру трубы d .

4. Входящий в эту формулу безразмерный коэффициент k одинаков для всех жидкостей и газов, а также для любых диаметров труб. Этот коэффициент называется критическим числом Рейнольдса Reкр и определяется следующим образом:

Reкр = Vкрd/v = pVкрd/μ ≈ 2300-2320

Как вычисляется число Рейнольдса?

Критерий подобия Рейнольдса (число Рейнольдса) позволяет судить о режиме течения жидкости в трубе. Число (критерий) Рейнольдса Re - мера отношения силы инерции к силе трения

Re = Vd/v = pVd/μ, где μ-динамич.коэф.вязкости, v = μ/p,

При Re < Reкр = 2320 течение является ламинарным;

Re > 3800-4200 течение турбулентное.

Зависимости справедливы только для круглых труб.

При увеличении скорости растут силы инерции . Силы трения при этом больше сил инерции и до некоторых пор выпрямляют траектории струек

При некоторой скорости vкр:

Сила инерции Fи > силы трения Fтр, поток становится турбулентным

Уравнение Бернулли для установившегося движения идеальной жидкости, его физический смысл.

Приведем уравнения Эйлера к виду, удобному для интегрирования, умножив соответственно на dx, dy,

dz и сложив:

Получаем

С учетом, что

-полный дифференциал давления

Окончательное выражение:

Если жидкость находится только под действием силы тяжести и ее плотность неизменна, то

Окончательно

уравнение Бернулли для струйки идеальной жидкости

Уравнение Бернулли для установившегося движения вязкой жидкости.

Распределение скоростей:

1 - элементарная струйка; идеальная жидкость;

2 - реальная (вязкая) жидкость

При движении реальной вязкой жидкости возникают силы трения и вихри, на преодоление которых жидкость затрачивает энергию.

В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии

Здесь

V 1,2 - средняя скорость потока в сечениях 1,2;

hW1,2 = hпот 1-2 - потерянный напор потери напора между сечениями 1-2;

α1,2 - безразмерный коэффициент Кориолиса - отношение действительной кинетической энергии потока в данном сечении к кинетической энергии потока в том же сечении при равномерном распределении скоростей.

Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2
Скорость течения вязкой жидкости в длинной трубке : v = (ΔP / η) · R 2 / (8 · l) , где ΔP — разность давлений на концах трубки, η — вязкость жидкости или газа (сильно зависит от температуры), R — внутренний радиус трубки, l — её длина, l >> R .

Коэффициенты Кориолиса . Величина коэффициентов для ламинарного и турбулентного режимов течения.

Коэффициент Кориолиса - отношение действительной кинетической энергии потока в данном сечении к кинетической энергии потока в том же сечении при равномерном распределении скоростей.

Мощность элементарной струйки:

Для потока

Разделив полученное выражение на и учитывая, что (удельная мощность на 1 Н

веса жидкости = средний напор в сечении Нср ) получаем:

Здесь ? - коэффициент Кориолиса.

При равномерном распределении скоростей α =1 (элементарная струйка/идеальная жидкость),

при неравномерном α>1. V - средняя скорость в живом сечении .

- коэффициент Кориолиса для ламинарного режима.

- коэффициент Кориолиса для турбулентного режима (стремится к 1,0 при увеличении Re)

Рациональный выбор сечений для решения уравнения Бернулли.

Сечения выбираются всегда перпендикулярно направлению движения жидкости и должны располагаться на прямолинейных участках потока

Одно из расчетных сечений необходимо брать там, где нужно определить давление р , высоту z или скорость V , второе, где величины р , z , и V известны

Нумеровать расчетные сечения следует так, чтобы жидкость двигалась от сечения 1-1 к сечению 2-2

Плоскость сравнения 0-0 - любая горизонтальная плоскость. Для удобства её проводят через центр тяжести одного из сечений

Практическое применение уравнения Бернулли: трубка Пито.

Трубка Пито - прибор для измерения скорости в точках потока.

Составив уравнение Бернулли для сечений a-a и b-b , получим

.

Отсюда

Практическое применение уравнения Бернулли: расходомер Вентури.

а) Пренебрегая потерями напора и считая z1 = z2 , напишем уравнение Бернулли для сечений 1-1 и 2-2:

б) Из уравнения неразрывности

в) Из уравнения пьезометра

Решая совместно, получаем:

Энергетическое толкование уравнения Бернулли.

Энергетических характеристик жидкости. Суммарной энергетической характеристикой жидкости является её гидродинамический напор.

С физической точки зрения это отношение величины механической энергии к величине веса жидкости, которая этой энергией обладает. Таким образом, гидродинамический напор нужно понимать как энергию единицы веса жидкости. И для идеальной жидкости эта величина постоянна по длине. Таким образом, физический смысл уравнения Бернулли это закон сохранения энергии для движущейся жидкости .

Здесь с энергетической точки зрения (в единицах энергии, Дж/кг) gz удель-ная потенциальная энергия положения; rР/ удельная потенциальная энергия давления; gz + rР/ удельная потенциальная энергия; u 2 /2 удельная кинети-ческая энергия; и скорость элементарной струйки идеальной жидкости.

Умножив все члены уравнения на удельный вес жидкости g , получим:

gz - весовое давление, Па; P гидродинамическое давление, Па; иr 2 /2 — динамическое давление Па; Hg — полное давление, Па

Геометрическое толкование уравнения Бернулли.

Положение любой частицы жидкости относительно некоторой произвольной линии нулевого уровня 0-0 определяется вертикальной координатой Z . Для реальных гидравлических систем это может быть уровень, ниже которого жидкость из данной гидросистемы вытечь не может. Например, уровень пола цеха для станка или уровень подвала дома для домашнего водопровода.

Все слагаемые уравнения Бернулли имеют размерность длины и их можно изобразить графически.

Значения - нивелирную, пьезометрическую и скоростную высоты можно определить для каждого сечения элементарной струйки жидкости. Геометрическое место точек, высоты которых равны , называется пьезометрической линией . Если к этим высотам добавить скоростные высоты, равные , то получится другая линия, которая называется гидродинамической или напорной линией .

Из уравнения Бернулли для струйки невязкой жидкости (и графика) следует, что гидродинамический напор по длине струйки постоянен.

Линия полного напора и ее построение.

Физический смысл уравнения Бернулли.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины — гидравлики.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю, то есть таких жидкостей, которые не прилипают к поверхности трубы. На самом деле экспериментально установлено, что скорость жидкости на поверхности твердого тела почти всегда в точности равна нулю (кроме случаев отрыва струй при некоторых редких условиях).

закон Бернулли объясняет эффект притяжения между телами, находящимися на границе потока движущейся жидкости (газа). Иногда это притяжение может создавать угрозу безопасности. Например, при движении скоростного поезда «Сапсан» (скорость движения более 200 км/час) для людей на платформах возникает опасность сброса под поезд.Аналогично «затягивающая сила» возникает при движении судов параллельным курсом: например, подобные инциденты происходили с лайнером «Олимпик».

Влияние эпюры скоростей в канале на удельную кинетическую энергию потока. Ее учет в уравнении Бернулли.

Кавитация, причины, условия возникновения, меры борьбы с кавитацией. Определение возможности кавитации с помощью уравнения Бернулли.

Кавитация - явление, возникающее в жидкости при высоких скоростях движения жидкости, т.е. при малых давлениях. Кавитация - нарушение сплошности жидкости с образованием паровых и газовых пузырей (каверн), вызванное падением статического давления жидкости ниже давления насыщенных паров этой жидкости при данной температуре.

p2 = pнп = f(t) - условие возникновения кавитации

Меры борьбы с кавитацией:

Снижение скорости жидкости в трубопроводе;

Уменьшение перепадов диаметров трубопровода;

Повышение рабочего давления в гидросистемах (наддув баков сжатым газом);

Установка всасывающего отверстия насоса не выше допускаемой высоты всасывания (из паспорта насоса);

Применение кавитационно-стойких материалов.

Запишем уравнение Бернулли для сечений 1-1 и 2-2 потока реальной жидкости:

. Отсюда

Правила применения уравнения Бернулли.

Выбираем два сечения потока: 1-1 и 2-2, а также горизонтальную плоскость отсчета 0-0 и записываем в общем виде уравнение Бернулли.

Плоскость сравнения 0-0 - любая горизонтальная плоскость. Для удобства её проводят через центр тяжести одного из сечений

При движении реальной жидкости, вследствие её вязкости, действуют гидравлические сопротивления, на преодоление которых затрачивается энергия. Эта энергия превращается в теплоту и рассеивается в дальнейшем движущей жидкостью.

Уравнение Бернулли для струйки реальной жидкости имеет вид

где ─ потери напора на участке длинойвдоль оси струйки между двумя сечениями.

Уравнение Бернулли для потока реальной жидкости имеет вид:

(3.9)

где
─ коэффициенты Кориолиса, учитывающие различие скоростей в разных точках сечения потока реальной жидкости.

На практике
: для ламинарного режима течения жидкости в круглых трубах
; для турбулентного режима
.

С помощью уравнения Бернулли решается большинство задач практической гидравлики. Для этого выбирают два сечения по длине потока, таким образом, чтобы для одного из них были известны величины
, а для другого сечения одна или величины подлежали определению. При двух неизвестных для второго сечения используют уравнение постоянства расхода жидкостиυ 1 ω 1 = υ 2 ω 2 .

Гидравлические сопротивления

Движущийся поток жидкости на своем пути преодолевает силы трения жидкости о стенки трубы или канала и различные местные сопротивления, вследствие чего возникают потери удельной энергии. Потери напора различают двух видов:

Потери по длине потока ;

Потери на преодоление местных сопротивлений
.

Полные потери напора равны сумме всех потерь

(3.10)

Потери напора по длине

При равномерном движении в трубах потери напора по длине, как при турбулентном, так и при ламинарном движении определяются для круглых труб по формуле Дарси

(3.11)

а для труб любой другой формы сечения по формуле

(3.12)

В некоторых случаях также используют формулу

(3.13)

Потери давления на трение по длине
, Па, определяются по формуле

(3.14)

где ─ длина участка трубы или канала, м;

─эквивалентный диаметр, м;

─средняя скорость течения, м/с;

─гидравлический радиус трубы, м;

─коэффициент гидравлического трения;

─коэффициент Шези, связанный с коэффициентом гидравлического трения зависимостями

;

В зависимости от режима движения применяются различные формулы для определения коэффициента гидравлического трения.

При ламинарном движении по трубам круглого сечения коэффициент гидравлического трения определяется по формуле

(3.15)

а для труб любой формы сечения

(3.16)

где А ─ коэффициент, численное значение которого зависит от формы поперечного сечения трубы.

Тогда формула для определения потерь напора по длине при ламинарном режиме принимает вид

(3.17)

Впервые наиболее исчерпывающие работы по определению были даны И.И. Никурадзе, который на основе опытных данных построил график зависимости
от
для ряда значений
. Опыты Никурадзе были проведены на трубах с искусственно заданной шероховатостью, полученной путем приклейки песчинок определенного размера на внутренние стенки трубопровода. Результаты этих исследований представлены на рисунке 3.5, где построены зависимости
от
для ряда значений
.

Прямая I соответствует ламинарному режиму движения жидкости в соответствии с выражением (3.15).

При турбулентном режиме различают три области гидравлических сопротивлений, установленных в результате опытов, проведенных Никурадзе (см. рисунок 3.5)

Рисунок 3.5 ─ График Никурадзе

Первая область ─ область малых
и
, где коэффициентне зависит от шероховатости, а определяется лишь числом
(отмечена на рисунке 3.5 прямой II).

Это область гидравлически гладких труб . Если число Рейнольдса лежит в диапазоне коэффициентопределяется по полуэмпирической формуле Блазиуса

. (3.18)