Способы умножения чисел. Научно – исследовательская работа «Нестандартные алгоритмы счета или быстрый счет без калькулятора 8 способов умножения

Муниципальное бюджетное общеобразовательное учреждение

Средняя общеобразовательная школа с. Шланлы

Муниципального района Аургазинский район РБ

Научно-исследовательская работа

«НЕОБЫЧНЫЕ СПОСОБЫ УМНОЖЕНИЯ»

Васильев Николай

Руководитель -

2013-2014 уч. г.

1. Введение……………………………………………………………......

2. Необычные способы умножения………………………………………...

1) Немного истории………..………..…………………………………..

2) Умножение на 9 ……………………………………………..............

3) Умножение на пальцах ………………………………………………

4) Таблица Пифагора ……………………………………………………

5) Таблица Оконешникова ……………………………………………….

6) Крестьянский способ умножения……………………….………....

7) Умножение способом «Маленький замок» ………….……………….

8) Умножение способом «Ревность» …………………………………….

9) Китайский способ умножения …………………………………………

10) Японский способ умножения …………………………………………

3. Заключение…………………………..…………………………………...

4. Список литературы……………………………………………………….

Введение

Человеку в повседневной жизни невозможно обойтись без вычислений. Поэтому на уроках математики, нас в первую очередь учат выполнять действия над числами, то есть считать. Умножаем, делим, складываем и вычитаем мы привычными для всех способами, которые изучаются в школе.

Однажды мне случайно попалась страница в Интернете с необычным способом умножения, которым пользуются дети в Китае (как там написано). Я прочитал, изучил и мне понравился этот способ. Оказалось, что можно умножать не только так как предлагают нам в учебниках математики. Мне стало интересно, а есть ли еще какие-нибудь способы вычислений. Ведь способность быстро производить вычисления вызывает откровенное удивление.

Постоянное применение современной вычислительной техники приводит к тому, что учащиеся затрудняются производить какие-либо расчеты, не имея в своем распоряжении таблиц или счетной машины. Знание упрощенных приемов вычислений дает возможность не только быстро производить простые расчеты в уме, но и контролировать, оценивать, находить и исправлять ошибки в результате механизированных вычислений. Кроме того, освоение вычислительных навыков развивает память, повышает уровень математической культуры мышления, помогает полноценно усваивать предметы физико-математического цикла.

Цель работы:

Показать необычные способы умножения.

Задачи:

Ø Найти как можно больше необычных способов вычислений.

Ø Научиться их применять.

Ø Выбрать для себя самые интересные или более легкие, чем те которые предлагаются в школе, и использовать их при счете.

Мне стало интересно, знают ли современные школьники, мои одноклассники и другие, иные способы выполнения арифметических действий, кроме умножения столбиком и деления «уголком» и хотели бы узнать новые способы? Я провел устный опрос. Было опрошено 20 учащихся 5-7 классов. Этот опрос показал, что современные школьники не знают других способов выполнения действий, так как редко обращаются к материалу, находящемуся за пределами школьной программы.

Результаты анкетирования:

https://pandia.ru/text/80/266/images/image002_6.png" align="left" width="267" height="178 src=">

2) а) Умеете ли вы умножать, складывать,

https://pandia.ru/text/80/266/images/image004_2.png" align="left" width="264 height=176" height="176">

3) а хотели бы узнать?

Необычные способы умножения.

Немного истории

Те способы вычислений, которыми мы пользуемся сейчас, не всегда были так просты и удобны. В старину пользовались более громоздкими и медленными приемами. И если бы школьник 21 века мог перенестись на пять веков назад, он поразил бы наших предков быстротой и безошибочностью своих вычислений. Молва о нем облетела бы окрестные школы и монастыри, затмив славу искуснейших счетчиков той эпохи, и со всех сторон приезжали бы учиться у нового великого мастера.

Особенно трудны в старину были действия умножения и деления. Тогда не существовало одного выработанного практикой приема для каждого действия. Напротив, в ходу была одновременно чуть не дюжина различных способов умножения и деления - приемы один другого запутаннее, запомнить которые не в силах был человек средних способностей. Каждый учитель счетного дела держался своего излюбленного приема, каждый «магистр деления» (были такие специалисты) восхвалял собственный способ выполнения этого действия.

В книге В. Беллюстина «Как постепенно дошли люди до настоящей арифметики» изложено 27 способов умножения, причем автор замечает: «весьма возможно, что есть и еще способы, скрытые в тайниках книгохранилищ, разбросанные в многочисленных, главным образом, рукописных сборниках».

И все эти приемы умножения - «шахматный или органчиком», «загибанием», «крестиком», «решеткой», «задом наперед», «алмазом» и прочие соперничали друг с другом и усваивались с большим трудом.

Давайте рассмотрим наиболее интересные и простые способы умножения.

Умножение на 9

Умножение для числа 9 - 9·1, 9·2 ... 9·10 - легче выветривается из памяти и труднее пересчитывается вручную методом сложения, однако именно для числа 9 умножение легко воспроизводится "на пальцах". Растопырьте пальцы на обеих руках и поверните руки ладонями от себя. Мысленно присвойте пальцам последовательно числа от 1 до 10, начиная с мизинца левой руки и заканчивая мизинцем правой руки (это изображено на рисунке).

вычисления".

счетной машинки" не обязательно могут выступать пальцы рук. Возьмите, к примеру, 10 клеточек в тетради. Зачеркиваем 8-ю клеточку. Слева осталось 7 клеточек, справа - 2 клеточки. Значит 9·8=72. Все очень просто.

7 клеток 2 клетки.

Умножение на пальцах

Древнерусский способ умножения на пальцах является одним из наиболее употребительных методов, которым успешно пользовались на протяжении многих столетий российские купцы. Они научились умножать на пальцах однозначные числа от 6 до 9. При этом достаточно было владеть начальными навыками пальцевого счета “единицами”, “парами”, “тройками”, “четверками”, “пятерками” и “десятками”. Пальцы рук здесь служили вспомогательным вычислительным устройством.

Для этого на одной руке вытягивали столько пальцев, на сколько первый множитель превосходит число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. Потом бралось число (суммарное) вытянутых пальцев и умножалось на 10, далее перемножались числа, показывавшие, сколько загнуто пальцев на руках, а результаты складывались.

Например, умножим 7 на 8. В рассмотренном примере будет загнуто 2 и 3 пальца. Если сложить количества загнутых пальцев (2+3=5) и перемножить количества не загнутых (2 3=6), то получатся соответственно числа десятков и единиц искомого произведения 56 . Так можно вычислять произведение любых однозначных чисел, больше 5.

Таблица Пифагора

Вспомним главное правило древнеегипетской математики, в котором сказано, что умножение производится при помощи удвоения и сложения полученных результатов; то есть каждое удвоение есть сложение числа с самим собой. Поэтому интересно посмотреть на результат подобного удвоения цифр и чисел, но полученному современным методом складывания « в столбик», известному даже в начальных классах школы.

Таблица Оконешникова

Школьники смогут научиться устно складывать и умножать миллионы, биллионы и даже секстиллионы с квадриллионами. А поможет им в этом кандидат философских наук Василий Оконешников, по совместительству изобретатель новой системы устного счёта. Учёный утверждает, что человек способен запоминать огромный запас информации, главное – как эту информацию расположить.

По мнению самого учёного, наиболее выигрышной в этом отношении является девятеричная система – все данные просто располагают в девяти ячейках, расположенных, как кнопочки на калькуляторе.

По мысли учёного, прежде чем стать вычислительным «компьютером», необходимо вызубрить созданную им таблицу. Цифры в ней распределены в девяти клетках непросто. Как утверждает Оконешников, глаз человека и его память так хитро устроены, что информация, расположенная по его методике, запоминается во-первых, быстрее, а во-вторых – намертво.

Таблица разделена на 9 частей. Расположены они по принципу мини калькулятора: слева в нижнем углу «1», справа в верхнем углу «9». Каждая часть – таблица умножения чисел от 1 до 9 (опять же в левом нижнем углу на 1, рядом правее на 2 и т. д., по той же «кнопочной» система). Как ими пользоваться?
Например , требуется умножить 9 на 842 . Сразу вспоминаем большую «кнопку» 9 (она вверху справа и на ней мысленно находим маленькие кнопочки 8,4,2 (они также расположены как на калькуляторе). Им соответствуют числа 72, 36, 18. Полученные числа складываем особо: первая цифра 7 (остаётся без изменения), 2 мысленно складываем с 3, получаем 5 – это вторая цифра результата, 6 складываем с 1, получаем третью цифру -7, и остаётся последняя цифра искомого числа – 8. В результате получилось 7578.
Если при сложении двух цифр получается число, превосходящее девять, то его первая цифра прибавляется к предыдущей цифре результата, а вторая пишется на «своё» место.

С помощью матричной таблицы Оконешникова по утверждению самого автора, можно изучать и иностранные языки , и даже таблицу Менделеева. Новая методика была опробована в нескольких российских школах и университетах. Минобразования РФ разрешило публиковать в тетрадях в клеточку вместе с привычной таблицей Пифагора новую таблицу умножения – пока просто для знакомства.

Пример : 15647 х 5

https://pandia.ru/text/80/266/images/image015_0.jpg" alt="Рисунок5" width="220 height=264" height="264"> 35 + 70 + 140 + 280 + 1120 = 1645.

Умножение способом «МАЛЕНЬКИЙ ЗАМОК»

Умножение чисел сейчас изучают в первом классе школы. А вот в Средние века совсем немногие владели искусством умножения. Редкий аристократ мог похвастаться знанием таблицы умножения, даже если он окончил европейский университет.

За тысячелетия развития математики было придумано множество способов умножения чисел. Итальянский математик Лука Пачоли в своём трактате «Сумма знаний по арифметике, отношениям и пропорциональности» (1494г.) приводит восемь различных методов умножения. Первый из них носит название «Маленький замок», а второй не менее романтичное название «Ревность или решетчатое умножение».

Преимущество способа умножения «Маленький замок» в том, что уже с самого начала определяются цифры старших разрядов, а это бывает важно, если требуется быстро оценить величину.

Цифры верхнего числа, начиная со старшего разряда, поочередно умножаются на нижнее число и записываются в столбик с добавлением нужного числа нулей. Затем результаты складываются.

Умножение чисел методом «ревность».

https://pandia.ru/text/80/266/images/image018.jpg" width="303" height="192 id=">.jpg" width="424 height=129" height="129">

3. Так выглядит сетка со всеми заполненными клетками.

Сетка 1

4. В заключение складываем числа, следуя диагональным полосам. Если сумма одной диагонали содержит десятки, то прибавляем их к следующей диагонали.

Сетка1

Из результатов сложения цифр по диагоналям (они выделены жёлтым фоном) составляется число 2355315 , которое и является произведением чисел 6827 и 345, то есть 6827 х 345 = 2355315.

Китайский способ умножения

А теперь представим метод умножения, бурно обсуждаемый в Интернете, который называют китайским. При умножении чисел считаются точки пересечения прямых, которые соответствуют количеству цифр каждого разряда обоих множителей.

https://pandia.ru/text/80/266/images/image024_0.png" width="92" height="46">Пример : умножим 21 на 13 . В первом множителе 2 десятка и 1единица, значит, строим 2 параллельные прямые и поодаль 1 прямую.

Прямые пересеклись в точках, количество которых и есть ответ, то есть 21 х 13 = 273

Забавно и интересно, но проводить 9 прямых при умножении на 9 как-то долго и неинтересно, а потом еще точки пересечения считать… В общем, без таблицы умножения не обойтись!

Японский способ умножения

Японский способ умножения – это графический способ с использованием кругов и линий. Не менее забавный и интересный чем китайский. Даже чем-то на него похож.

Пример: умножим 12 на 34. Так как второй множитель двузначное число, а первая цифра первого множителя 1 , строим два одиночных круга в верхней строке и два двоичных круга в нижней строке, так как вторая цифра первого множителя равна 2 .

12 х 34

Количество частей, на которые разделились круги и является ответом, то есть 12 х 34 = 408.

Из всех найденных мною необычных способов счета более интересным показался способ «решетчатого умножения или ревность». Я показал его своим одноклассникам, и он им тоже очень понравился.

Самым простым мне показался метод «удвоения и раздвоения», который использовали русские крестьяне. Я его использую при умножении не слишком больших чисел (очень удобно его использовать при умножении двузначных чисел).

Я думаю, что и наш способ умножения в столбик не является совершенным и можно придумать еще более быстрые и более надежные способы.

Литература

1. «Рассказы о математике». – Ленинград.: Просвещение, 1954. – 140 с.

2. Феномен русского умножения. История. http://numbernautics. ru/

3. , «Старинные занимательные задачи». – М.: Наука. Главная редакция физико-математической литературы, 1985. – 160 с.

4. Перельман счет. Тридцать простых приемов устного счета. Л., 1941 - 12 с.

5. Перельман арифметика. М. Русанова,1994--205с.

6. Энциклопедия «Я познаю мир. Математика». – М.: Астрель Ермак, 2004.

7. Энциклопедия для детей. «Математика». – М.: Аванта +, 2003. – 688 с.

Правообладатель иллюстрации Getty Images Image caption Не заболела бы голова...

"Математика такая трудная..." Вы наверняка не раз слышали эту фразу, а, может быть, даже сами ее произносили вслух.

Для многих математические вычисления - дело непростое, но вот вам три несложных способа, которые помогут выполнить хотя бы одно арифметическое действие - умножение. Без калькулятора.

Вполне вероятно, что в школе вы познакомились с наиболее традиционным способом умножения: сначала вы выучили на память таблицу умножения, а уж затем стали в столбик перемножать каждую из цифр, которыми записываются многозначные числа.

Если вам надо перемножить многозначные числа, то, чтобы найти ответ, потребуется большой лист бумаги.

Но если от этого длинного набора идущих одна под другой строчек с цифрами у вас голова идет кругом, то есть и другие, более наглядные методы, которые могут вам помочь в этом деле.

Но тут пригодятся некоторые художественные навыки.

Давайте порисуем!

Как минимум три способа умножения связаны с рисованием пересекающихся линий.

1. Способ индейцев майя , или японский метод

Относительно происхождения этого способа существует несколько версий.


Трудно умножать в уме? Попробуйте метод майя и японцев

Некоторые говорят, что его придумали индейцы цивилизации майя, населявшие районы Центральной Америки до прибытия туда конкистадоров в XVI веке. Он также известен как японский метод умножения, поскольку учителя в Японии используют именно этот визуальный способ, когда учат младших школьников умножению.

Суть в том, что параллельные и перпендикулярные линии представляют цифры тех чисел, которые нужно перемножить.

Давайте умножим 23 на 41.

Для этого нам надо нарисовать две параллельные линии, представляющие 2, и, немного отступя, еще три линии, представляющие 3.

Затем, перпендикулярно к этим линиям мы нарисуем четыре параллельные линии, представляющие 4 и, чуть отступя, еще одну линию для 1.

Ну как, неужели трудно?

2. Индийский способ , или итальянское умножение "решеткой" - "джелозия"

Происхождение этого способа умножения тоже не ясно, однако он хорошо известен по всей Азии.

"Алгоритм "джелозия" передавался из Индии в Китай, затем в Аравию, а оттуда в Италию в XIV-XV веках, где он получил название "джелозия", поскольку внешне был похож на венецианские решетчатые ставни", - пишет Марио Роберто Каналес Виллануэва в своей книге, посвященной различным способам умножения.

Правообладатель иллюстрации Getty Images Image caption Индийская или итальянская система умножения похожа на венецианские жалюзи

Давайте снова возьмем пример с умножением 23 на 41.

Теперь нам потребуется начертить таблицу из четырех клеток - по клетке на цифру. Подпишем сверху у каждой клетки соответствующую цифру - 2,3,4,1.

Затем надо разделить каждую клетку надвое по диагонали, чтобы получились треугольники.

Теперь мы сначала умножим первые цифры каждого числа, то есть 2 на 4, и запишем в первом треугольнике 0, а во втором 8.

Потом перемножим 3x4 и запишем 1 в первом треугольнике, а 2 во втором.

Проделаем то же самое и с другими двумя цифрами.

Когда все клетки нашей таблицы будут заполнены, мы складываем цифры в такой последовательности, как показано на видео, и записываем получившийся результат.


Media playback is unsupported on your device

Трудно умножать в уме? Попробуйте индийский метод

Первая цифра у нас будет 0, вторая 9, третья 4, четвертая 3. Таким образом, результат получился: 943.

Как вам показалось, проще этот способ или нет?

Давайте попробуем еще один метод умножения с помощью рисунка.

3. "Массив" , или метод таблицы

Как и в предыдущем случае, для этого потребуется нарисовать таблицу.

Возьмем тот же пример: 23 x 41.

Тут нам надо разделить наши числа на десятки и единицы, поэтому 23 мы запишем как 20 в одной колонке, и 3 в другой.

По вертикали мы запишем наверху 40, а внизу 1 .

Затем мы перемножим числа по горизонтали и вертикали.


Media playback is unsupported on your device

Трудно умножать в уме? Нарисуйте таблицу.

Но вместо того чтобы умножать 20 на 40, мы отбросим нули и просто перемножим 2 x 4, получив 8.

То же самое сделаем, умножая 3 на 40. Мы удерживаем в скобках 0 и умножаем 3 на 4 и получаем 12.

Проделаем то же самое с нижним рядом.

Теперь добавим нули: в левой верхней клетке у нас получилось 8, но мы отбросили два нуля - теперь мы их допишем и получится 800.

В правой верхней клетке, когда мы умножали 3 на 4(0), у нас получилось 12; теперь мы допишем ноль и получим 120.

Сделаем так же со всеми прочими удержанными нулями.

И наконец, мы складываем все четыре числа, полученных умножением в таблице.

Результат? 943. Ну как, помогло?

Важно разнообразие

Правообладатель иллюстрации Getty Images Image caption Все способы хороши, главное - чтобы ответ сошелся

Что точно можно утверждать, - так это то, что все эти разные способы дали нам один и тот же результат!

Нам все-таки пришлось кое-что перемножить в процессе, но каждый шаг был проще, чем при умножении традиционным способом, и гораздо более наглядный.

Так почему же мало где в мире в обычных школах учат этим методам вычисления?

Одной из причин может быть упор на обучение "вычислениям в уме" - чтобы развивать умственные способности.

Однако Дэвид Уиз, учитель математики из Канады, работающий в государственных школах в Нью-Йорке, объясняет это иначе.

"Недавно я прочитал, что причина, по которой используется традиционный метод умножения, - это экономия бумаги и чернил. Этот метод не был придуман как самый простой для использования, но как самый экономный с точки зрения ресурсов, поскольку чернила и бумага были в дефиците", - объясняет Уиз.

Правообладатель иллюстрации Getty Images Image caption Для некоторых методов вычисления только головы недостаточно, нужны еще и фломастеры

Невзирая на это, он полагает, что альтернативные методы умножения очень полезны.

"Я не думаю, что это полезно - сразу учить школьников умножению, заставляя их выучивать таблицу умножения, но не объясняя им при этом, откуда она взялась. Поскольку если они забудут одно число, то как они смогут продвинуться в решении задачи? Метод майя или японский метод необходим, потому что с его помощью вы можете понять общую структуру умножения, а это хорошее начало", - полагает Уиз.

Существует и ряд других способов умножения, например, русский или египетский, они не требуют дополнительных навыков рисования.

Как говорят специалисты, с которыми мы беседовали, все эти методы помогают лучше понять процесс умножения.

"Понятно, что все идет на пользу. Математика в сегодняшнем мире открыта как внутри, так и снаружи классной комнаты", - резюмирует Андреа Васкес, учительница математики из Аргентины.

Мир математики очень велик, но я всегда интересовалась способами умножения. Работая над этой темой, я узнала много интересного, научилась подбирать нужный мне материал из прочитанного. Усвоила, как решаются отдельные занимательные задачи, головоломки и примеры умножения разными способами, а так же и то, на чем основаны арифметические фокусы и интенсивные приемы вычислений.

ПРО УМНОЖЕНИЕ

Что остается у большинства людей в голове из того, что они когда-то изучали в школе? Конечно, у разных людей - разное, но у всех, наверняка, таблица умножения. Помимо усилий, приложенных для ее «задалбливания» вспомним сотни (если не тысячи) задач, решенных нами с ее помощью. Триста лет назад в Англии человек, знающий таблицу умножения, уже считался ученым человеком.

Способов умножения было придумано много. Итальянский математик конца XV - начала XVI века Лука Пачиоли в трактате об арифметике приводит 8 различных способов умножения. В первом, который носит название «маленький замок», цифры верхнего числа, начиная со старшей, поочередно умножаются на нижнее число и записываются в столбик с добавлением нужного числа нулей. Затем результаты складываются. Преимущество этого метода перед обычным состоит в том, что уже с самого начала определяются цифры старших разрядов, а это бывает важно при прикидочных расчетах.

Второй способ носит не менее романтическое название «ревность» (или решетчатое умножение). Рисуется решетка, в которую затем вписывают результаты промежуточных вычислений, точнее, числа из таблицы умножения. Решетка является прямоугольником, разделенным на квадратные клетки, которые, в свою очередь, разделены пополам диагоналями. Слева (сверху вниз) писался первый множитель, а наверху - второй. На пересечении соответствующей строки и столбца писалось произведение стоящих в них цифр. Затем полученные числа складывались вдоль проведенных диагоналей, а результат записывался в конце такого столбика. Результат прочитывался вдоль нижней и правой сторон прямоугольника. «Такая решетка, - пишет Лука Пачиоли, - напоминает решетчатые ставни-жалюзи, которые вешались на венецианские окна, мешая прохожим видеть сидящих у окон дам и монахинь».

Все способы умножения, описанные в книге Луки Пачиоли, использовали таблицу умножения. Однако русские крестьяне умели умножать и без таблицы. Их способ умножения использовал лишь умножение и деление на 2. Чтобы перемножить два числа, их записывали рядом, а затем левое число делили на 2, а правое умножали на 2. Если при делении получался остаток, то его отбрасывали. Затем вычеркивались те строчки в левой колонке, в которых стоят четные числа. Оставшиеся числа в правой колонке складывались. В результате получалось произведение первоначальных чисел. Проверьте на нескольких парах чисел, что это действительно так. Доказательство справедливости этого метода показывается с помощью двоичной системы счисления.

Старинный русский способ умножения.

С глубокой древности и почти до восемнадцатого века русские люди в своих вычислениях обходились без умножения и деления: они применяли лишь два арифметических действия - сложение и вычитание, да ещё так называемые «удвоение» и «раздвоение». Сущность русского старинного способа умножения состоит в том, что умножение любых двух чисел сводится к ряду последовательных делений одного числа пополам (последовательное, раздвоение) при одновременном удвоении другого числа. Если в произведении, например 24 X 5, множимое уменьшить в 2 раза («раздвоить»), а множитель увеличить в 2 раза

(«удвоить»), то произведение не изменится: 24 х 5 = 12 X 10 =120. Пример:

Деление множимого пополам продолжают до тех пор, пока в частном не получится 1, одновременно удваивая множитель. Последнее удвоенное число и- даёт искомый результат. Значит, 32 X 17 = 1 X 544 = 544.

В те давние времена удвоение и раздвоение принимались даже за особые арифметические действия. Только какие же это особые. действия? Ведь, например, удвоение числа - это не особое действие, а всего лишь сложение данного числа с самим собой.

Заметим числа делятся па 2 всё время без остатка. А как же быть, если множимое делится на 2 с остатком? Пример:

Если множимое не делится на 2, то от него сначала отнимается единица, а затем уже производится деление на 2. Строчки с чётными множимыми вычёркиваются, а правые части строчек с нечётными множимыми складываются.

21 X 17 = (20 + 1) X 17 = 20 X 17+17.

Число 17 запомним (первая строка не вычёркивается!), а произведение 20 X 17 заменим равным ему произведением 10 X 34. Но произведение 10 X 34, в свою очередь, можно заменить равным ему произведением 5 X 68; поэтому вторая строка вычёркивается:

5 X 68 = (4 + 1) X 68 = 4 X 68 + 68.

Число 68 запомним (третья строка не вычёркивается!), а произведение 4 X 68 заменим равным ему произведением 2 X 136. Но произведение 2 X 136 можно заменить равным ему произведением 1 X 272; поэтому четвёртая строка вычёркивается. Значит, чтобы вычислить произведение 21 X 17, нужно сложить числа 17, 68, 272 - правые части строчек именно с нечётными множимыми. Произведения же с чётными множимыми всегда можно заменить с помощью раздвоения множимого и удвоения множителя равными им произведениями; поэтому такие строчки исключаются из вычисления окончательного произведения.

Я попробовала сама умножать старинным способом. Я взяла числа 39 и 247, у меня получился такой

Столбиков получатся ещё более длинные, чем у меня если брать множимое больше, чем 39. Тогда я решил, тот же пример по-современному:

Оказывается, наш школьный способ умножения чисел значительно проще и экономнее, чем старинный русский способ!

Только мы должны знать прежде всего таблицу умножения, а наши предки её не знали. Кроме того, мы должны хорошо знать и само правило умножения, они же знали только, как удваивать да раздваивать числа. Как видите, вы умеете умножать значительно лучше и быстрее, чем самый знаменитый вычислитель в древней Руси. Между прочим, несколько тысяч лет тому назад египтяне выполняли умножение почти точно так же, как и русские люди в старину.

Вот здорово, что люди из разных стран, умножали одним и тем же способом.

Не так давно, всего около ста лет тому назад, заучить таблицу умножения было делом очень трудным для учащихся. Чтобы убедить учеников в необходимости знания наизусть таблицы, авторы математических книг издавна прибегали. к стихам.

Вот несколько строк из незнакомой нам книги: «Но ко умножению потребно есть последующую таблицу, толь твердо в памяти имети, тако да кое-ждо число, с коимждо умножив, безо всякого медления речию сказати, или написати, такоже 2-жды 2 есть 4, или 2-жды 3 есть 6, и 3-жды 3 есть 9 и прочая».

Аще кто не твердитъ И во всей науки таблицы и гордитъ, несвободъ от муки,

Не можетъ познати Колико не учитъ числомъ что множати туне ся удручитъ

Правда, в этом отрывке и стихах не всё понятно: написано как-то не совсем по-русски, ведь всё это написано более 250лет тому назад, в 1703 году, Леонтием Филипповичем Магницким, замечательным русским педагогом, а с тех пор русский язык заметно изменился.

Л. Ф. Магницкий написал и издал первый в России печатный учебник арифметики; до него же были лишь рукописные математические книги. По «Арифметике» Л. Ф. Магницкого учился великий русский учёный М. В. Ломоносов, а также многие другие видные русские учёные восемнадцатого века.

А как умножали в те времена, во времена Ломоносова?. Посмотрим пример.

Как мы поняли, действие умножения тогда записывали почти так, как и в наше время. Только множимое называли «еличество», а произведение - «продукт» и, кроме того, не писали знак умножения.

А как тогда объясняли умножение?

Известно, что М. В. Ломоносов знал наизусть всю «Арифметику» Магницкого. В соответствии с этим учебником маленький Миша Ломоносов умножение 48 на 8 объяснил бы так: «8-жды 8 есть 64, я 4 пишу под чертою, против 8, а 6 десятиц во уме имею. И дальше 8-жды 4 есть 32, и я 3 во уме держу, а к 2 приложу 6 десятиц, и будет 8. И сие 8 напишу подле 4, в ряд к левой руке, а 3 пока во уме суть, напишу в ряд подле 8, к левой же руке. И будет из умножения 48 с 8 произведение 384».

Да и мы почти так же объясняем,только мы говорим по-современному, а не по-старинному и, кроме того, называем разряды. Например, 3 надо писать на третьем месте потому, что это будут сотни, а не просто «в ряд подле 8, к левой же руке».

Рассказ «Маша - «фокусница»».

Я могу угадывать не только день рождения, как это делал прошлый раз Павлик, но и год рождения, - начала Маша.

Номер месяца, в котором вы родились, умножьте на 100. , затем прибавьте день рождения. , результат умножьте на 2. , к полученному числу прибавьте 2; результат умножьте на 5, к полученному числу прибавьте 1, к результату припишите нуль. , к полученному числу прибавьте ещё 1. и, наконец, прибавьте число ваших лет.

Готово, у меня получилось 20721. - говорю я.

* Правильно, - подтвердил я.

А у меня получилось 81321, - сообщает Витя, ученик третьего класса.

Ты, Маша наверное ошиблась, - усомнился Петя. - Как же так получается: Витя из третьего класса, а родился тоже в 1949 году, как и Саша.

Нет, Маша верно угадала, - подтверждает Витя. Только я один год долго болел и поэтому дважды ходил во второй класс.

* А у меня получилось 111521, - сообщает Павлик.

Как же так, - спрашивает Вася, - Павлику тоже 10 лет, как и Саше, а родился он в 1948 году. Почему же не в 1949 году?

А потому, что сейчас идёт сентябрь, а Павлик родился в ноябре, и ему ещё только 10 лет, хотя он и родился в 1948 году, - объяснила Маша.

Она угадала дату рождения ещё трёх-четырёх учеников, а затем объяснила, как она это делает. Оказывается, от последнего числа она отнимает 111, а потом остаток ивает на три грани справа налево по две цифры. Средние две цифры обозначают день рождения, первые две пли одна - номер месяца, а последние две цифры число лет. Зная же, сколько человеку лет, нетрудно определить и год рождения. Например, у меня получилось число 20721. Если от него отнять 111, то получится 20610. Значит, сейчас мне 10 лет, а родился я 6 февраля. Так как сейчас идёт сентябрь 1959 года, то, значит, я родился в 1949 году.

А почему надо отнимать именно 111, а не какое-нибудь другое число? - спросили мы. -И почему именно так распределяются день рождения, номер месяца и число лет?

А вот смотрите, - пояснила Маша. - Например, Павлик, выполняя мои требования, решил такие примеры:

1)11 X 100 = 1100; 2) 1100 + J4 = 1114; 3) 1114 X 2 =

2228; 4) 2228 + 2 = 2230; 57 2230 X 5 = 11150; 6) 11150 1 = 11151; 7) 11151 X 10 = 111510

8)111510 1 1-111511; 9)111511 + 10=111521.

Как видно, номер месяца (11) он умножал на 100, затем на 2, потом ещё на 5 и, наконец, ещё на 10 (приписывал куль), а всего на 100 X 2 X 5 X 10, то есть на 10000. Значит, 11 стали десятками тысяч, то есть составляют третью грань, если считать справа налево по две цифры. Так узнают номер месяца, в котором вы родились. День рождения (14) он умножал на 2, затем на 5 и, наконец, ещё на 10, а всего на 2 X 5 X 10, то есть на 100. Значит, день рождения надо искать среди сотен, во второй грани, но тут имеются посторонние сотни. Смотрите: он прибавлял число 2, которое умножал на 5 и на 10. Значит, у него получилось лишнего 2x5x10=100 - 1 сотня. Эту 1 сотню я и отнимаю от 15 сотен в числе 111521, получается 14 сотен. Так я узнаю день рождения. Число лет (10) ни на что не умножалось. Значит, это число нужно искать среди единиц, в первой грани, но тут имеются посторонние единицы. Смотрите: он прибавлял число 1, которое умножал на 10, а затем прибавлял ещё 1. Значит, у него получилось всего лишних 1 х ТО + 1 = 11 единиц. Эти 11 единиц я и отнимаю от 21 единицы в числе 111521, получается 10. Так я узнаю число л е т. А всего, как видите, от числа 111521 я отнимала 100+ 11 = 111. Когда я от числа 111521 отняла 111, то получилось ПНЮ. Значит,

Павлик родился 14 ноября, и ему 10 лет. Сейчас идёт 1959-й год, но я 10 отнимала не от 1959, а от 1958, так как 10 лет Павлику исполнилось в прошлом году, в ноябре.

Конечно, такое объяснение сразу не запомнишь, но я постарался понять его на своём примере:

1) 2 X 100 = 200; 2) 200 + 6 = 206; 3) 206 X 2 = 412;

4) 412 + 2 = 414; 5) 414 X 5 = 2070; 6) 2070 + 1 = 2071; 7) 2071 X 10 = 20710; 8) 20710 + 1 = 20711; 9) 20711 + + 10 = 20721; 20721 - 111 = 2"ОбТО; 1959 - 10 = 1949;

Головоломка.

Первая задача: В полдень из Сталинграда в Куйбышев выходит пассажирский пароход. Часом позже из Куйбышева в Сталинград выходит товаро-пассажирский пароход, который движется медленнее первого парохода. Когда пароходы встретятся, то какой из них будет дальше от Сталинграда?

Это не обычная арифметическая задача, а шутка! Пароходы будут на одинаковом расстоянии от Сталинграда, а также и от Куйбышева.

А вот вторая задача, В прошлое воскресенье наш отряд и отряд пятого класса сажали деревья вдоль Большой Пионерской улицы. Отряды должны были посадить поровну деревьев, по равному количеству на каждой стороне улицы. Как вы помните, наш отряд пришёл на работу пораньше, и до прихода пятиклассников мы успели посадить 8 деревьев, но, как оказалось, не на своей стороне улицы: мы погорячились и начали работу не там, где было нужно. Потом мы работали уже на своей стороне улицы. Пятиклассники закончили работу раньше. Однако они не остались в долгу перед нами: перешли на нашу сторону и посадили сначала 8 деревьев («отдали долг»), а затем ещё 5 деревьев, и работа нами была закончена.

Спрашивается, на сколько деревьев больше посадили пятиклассники, чем мы?

: Конечно, пятиклассники посадили только на 5 деревьев больше, чем мы: когда они посадили на нашей стороне 8 деревьев, то тем самым отдали долг; а когда они посадили ещё 5 деревьев, то как бы дали нам взаймы 5 деревьев. Вот и выходит, что они посадили только на 5 деревьев больше, чем мы.

Нет рассуждение неправильное. Верно, что пятиклассники сделали нам одолжение, посадив за нас 5 деревьев. Но дальше, чтобы получить верный ответ, надо рассуждать так: мы недовыполнили своё задание на 5 деревьев, пятиклассники же перевыполнили своё на 5 деревьев. Вот и выходит, что разница между числом деревьев, посаженных пятиклассниками, и числом деревьев, посаженных нами, составляет не 5, а 10 деревьев!

А вот последняя задача-головоломка, Играя в мяч, 16 учеников разместились по сторонам квадратной площадки так, что на каждой стороне было по 4 человека. Затем 2 ученика ушли Остальные переместились так, что на каждой стороне квадрата снова оказалось по 4 человека. Наконец, ушли ещё 2 ученика, но остальные разместились так, что на каждой стороне квадрата по-прежнему было по 4 человека. Как это могло получиться?Решите.

Два приёма быстрого умножении

Однажды учитель предложил своим ученикам такой пример: 84 X 84. Один мальчик быстро ответил: 7056. «Как ты считал?» - спросил ученика учитель. - «Я взял 50 X 144 и выкинул 144», - ответил тот. Ну-ка, объясним как считал ученик.

84 х 84 = 7 X 12 X 7 X 12 = 7 X 7 X 12 X 12 = 49 X 144 = (50 - 1) X 144 = 50 X 144 - 144, а 144 полусотни - это 72 сотни, значит, 84 X 84 = 7200 - 144 =

А теперь сосчитаем тем же способом, сколько будет 56 X 56.

56 X 56 = 7 X 8 X 7 X 8 = 49 X 64 = 50 X 64 - 64, то есть 64 полусотни, или же 32 сотни (3200), без 64 т. е. чтобы умножить число на 49, нужно данное число умножить на 50 (полсотни), и из полученного произведения вычесть данное число.

А вот примеры на другой способ вычисления, 92 X 96, 94 X 98.

Ответы: 8832 и 9212. Пример, 93 X 95. Ответ: 8835. Наши вычисления дали это же число.

Так быстро можно считать только тогда, когда числа близки к 100. Находим дополнения до 100 к данным числам: для 93 будет 7, а для 95 будет 5, от первого данного числа отнимаем дополнение второго: 93 - 5 = 88 - столько будет в произведении сотен,перемножаем дополнения: 7 X 5 = 3 5 - столько будет в произведении единиц. Значит, 93 X 95 = 8835. А почему именно так надо делать, объяснить не трудно.

Например, 93 - это 100 без 7, а 95 - это 100 без 5. 95 X 93 = (100 - 5) х 93 = 93 X 100 - 93 х 5.

Чтобы отнять 5 раз по 93, можно 5 раз отнять по 100, но зато прибавить 5 раз по 7. Тогда получается:

95 х 93 = 93 х 100 - 5 х 100 + 5 х 7 = 93 сот. - 5 сот. + 5 X 7 = (93 - 5) сот. + 5 x 7 = 8800 + 35= = 8835.

97 X 94 = (97 - 6) X 100 + 3 X 6 = 9100 + 18 = 9118, 91 X 95 = (91 - 5) х 100 + 9 х 5 = 8600 + 45 = 8645.

Умножение в. домино.

При помощи костей домино легко изобразить некоторые случаи умножения многозначных чисел на однозначное число. Например:

402 Х 3 и 2663 Х 4

Победителем будет признан тот, кто за определенное время сумеет использовать наибольшее число костей домино, составляя примеры на умножение трёх-, четырёхзначных чисел на однозначное число.

Примеры на умножение четырёхзначных чисел на однозначное.

2234 Х 6 ; 2425 Х 6 ; 2336 Х 1; 526 Х 6.

Как видно, использовано лишь 20 костей домино. Составлены примеры на умножение не только четырёхзначных чисел на однозначное число, но и трёх-, и пяти-, и шестизначных чисел на однозначное число. Использовано 25 костей и составлены такие примеры:

Однако все 28 костей всё-таки можно использовать.

Рассказы о том, хорошо ли знал арифметику старик Хоттабыч.

Рассказ « Я получаю по арифметике «5»».

Как только на следующий день я зашёл к Мише, он сразу же спросил: «Что нового, интересного было на занятии кружка?» Я показал Мише и его друзьям, как умно жали в старину русские люди. Затем я предложил им в уме сосчитать, сколько будет 97 X 95, 42 X 42 и 98 X 93. Они, конечно, без карандаша и бумаги не смогли этого сделать и очень удивились, когда я почти мгновенно дал на эти примеры правильные ответы. Наконец, мы все вместе решили данную на дом задачу. Оказывается, очень важно, как расположены точки на листе бумаги. В зависимости от этого можно через четыре точки провести и одну, и четыре, и шесть прямых линий, но не больше.

Затем я предложил ребятам составить примеры на умножение из костей домино так, как это делалось на кружке. Нам удалось использовать по 20, по 24 и даже по 27 костей, но из в с е х 28 мы так и не смогли составить примеры, хотя просидели за-этим занятием долго.

Миша вспомнил, что сегодня в кинотеатре демонстрируется кинофильм «Старик Хоттабыч». Мы побыстрее закончили заниматься арифметикой и побежали в кино.

Вот это картина! Хоть и сказка, а всё равно интересно: рассказывается о нас, мальчишках, о школьной жизни, а также о чудаковатом мудреце - джине Хоттабыче. А здорово напутал Хоттабыч, подсказывая Вольке по географии! Как видно, в давно прошедшие времена даже мудрецы индийские - джины - очень-очень плохо знали географию, i Интересно, а как стал «бы подсказывать старик Хоттабыч, если бы Волька сдавал экзамен по арифметике? Вероятно, Хоттабыч и арифметику-то как следует не знал.

Индийский способ умножения.

Пусть нужно умнвжить 468 на 7. Слева пишем множимое, справа множитель:

У индийцев не было знака умножения.

Теперь я 4 умножаем на 7, получится 28. Это число записываем надцифрой 4.

Теперь 8 умножаем на 7, получится 56. 5 прибавлем к 28, получится 33; 28 сотрем, а 33 запишем, 6 запишем над цифрой 8:

Получалось весьма интересно.

Теперь 6 умножаем на 7, получится 42, 4 прибавлем к 36, получится 40; 36 сотрем, а 40 запишем; 2 же запишем над цифрой 6. Итак, 486 умножить на 7, получится 3402:

Верно решено, но только не чень-то быстро и удобно!Так именно умножали знаменитейшие в то время вычислители.

Как видите, старик Хоттабыч арифметику знал совсем не плохо. Однако запись действий он производил не так, как это делаем мы.

Давно-давно, более тысячи трёхсот лет тому назад, индийцы были лучшими вычислителями. Однако они не имели ещё бумаги, и все вычисления производили на небольшой чёрной доске, делая на ней записи тростниковым пером и применяя очень жидкую белую краску, которая оставляла знаки, легко стиравшиеся.

Когда мы пишем мелом на доске, то это немного напоминает индийский способ записи: на чёрном фоне появляются белые знаки, которые легко стирать и исправлять.

Индийцы производили вычисления также и на белой дощечке, посыпанной красным порошком, на которой они писали знаки маленькой палочкой, так что появлялись белые знаки на красном поле. Примерно такая же картина получается, когда мы пишем мелом на красной или коричневой доске - линолеуме.

Знака умножения в то время ещё не существовало, и между множимым и множителем оставлялся лишь Некоторый промежуток. Индийским способом можно было бы умножать, начиная и с единиц. Однако сами индийцы умножение выполняли начиная со старшего разряда, и записывали неполные произведения как раз над множимым, поразрядно. При этом сразу был виден старший разряд полного произведения и, кроме того, исключался пропуск какой-либо цифры.

Пример умножения индийским способом.

Арабский способ умножения.

Ну, а как же, в самом дате, выполнять умножение индийским способом, если записывать на бумаге?.

Этот приём умножения для записи на бумаге приспособили арабы,Знаменитый учёный древности узбек Мухаммед ибн Муса Альхвариз-ми (Мухаммед сын Мусы из Хорезма- города, который был расположен на территории современной Узбекской ССР) более тысячи лет тому назад выполнял умножение на пергаменте так:

Как видно, он не стирал ненужные цифры (на бумаге это делать уже неудобно), а вычёркивал их; новые же цифры он записывал над зачёркнутыми, разумеется, поразрядно.

Пример умножения таким же способом, делая записи в тетради.

Значит, 7264 X 8 = 58112. А как же умножать на двузначное число, на многозначное?.

Приём умножения остается тот же, однако запись при этом значительно усложняется. Например, нужно умножить 746 на 64. Сначала умножали на 3 десятка, получалось

Значит, 746 X 34 = 25364.

Как видите, вычёркивание ненужных цифр и замена их новыми цифрами при умножении даже на двузначное число приводит к слишком громоздкой записи. А что будет, если умножать на трёх-, четырёхзначное число?!

Да, арабский способ умножения не очень удобно.

Этот способ умножения держался в Европе вплоть до восемнадцатого века, целых тысячу лет. Он назывался способам крестика, или хиазмом, так как между перемножаемыми числами ставилась греческая буква X (хи), постепенно заменённая косым крестом. Вот теперь мы хорошо видим, что наш современный способ умножения является самым простым и удобным, наверное наилучшим из всех возможных способов умножения.

Да, сам наш школьный способ умножения многозначных чисел является очень хорошим. Однако запись умножения можно делать и по-другому. Пожалуй, лучше всего было бы это делать, например, так:

Такой способ и в самом деле хорош: умножение начинается со старшего разряда множителя, низший разряд неполных произведений записывается под соответствующим разрядом множителя, чем устраняется возможность ошибки в том случае, когда в каком-либо разряде множителя встречается нуль. Примерно так записывают умножение многозначных чисел чехословацкие школьники. Вот интересно. А мы-то думали, что арифметические действия можно записывать только так, как это принято у нас.

Ещё несколько головоломок.

Вот вам первая, простенькая задача: Турист может пройти за час 5 км. Сколько километров он пройдёт за 100 часов?

Ответ:500 километров.

А это ещё большой вопрос! Надо знать более точно, как турист шёл эти 100 часов: без отдыха или с передышками. Иначе говоря, надо знать: 100 часов - это время движения туриста или же просто время его пребывания в пути. Быть в движении подряд 100 часов человек, наверное, не в состоянии: это же больше четырёх суток; да и скорость движения при этом всё время уменьшалась бы. Другое дело, если турист шёл с передышками на обед, на сон и т. д. Тогда он за 100 часов движения может пройти и все 500 км; только в пути он должен быть уже не четверо суток, а примерно суток двенадцать (если будет проходить за день в среднем 40 км). Если же он в пути был 100 часов, то мог пройти примерно лишь 160- 180 км.

Разные ответы. Значит в условие задачи надо кое-что добавить, иначе ответ дать невозможно.

Решим теперь такую задачу:10 цыплят в 10 дней съедают 1 кг зерна. Сколько килограммов зерна съедят 100 цыплят в 100 дней?

Решение:10 цыплят в 10 дней съедают 1 кг зерна, значит, 1 цыплёнок за те же 10 дней съедаете 10 раз меньше, то есть 1000 г: 10 = 100 г.

В один день цыплёнок съедает ещё в 10 раз меньше, то есть 100 г: 10 = 10 г. Теперь мы знаем, что 1 цыплёнок в 1 день съедает 10 г зерна. Значит, 100 цыплят в день съедают в 100 раз больше, то есть

10 г X 100 = 1000 г = 1 кг. В 100 же дней они съедят ещё в 100 раз больше, то есть 1 кг X 100 = 100 кг = 1 ц. Значит, 100 цыплят в 100 дней съедают целый центнер зерна.

Есть решение более быстрое: цыплят больше в 10 раз и кормить надо дольше в 10 раз, значит, всего зерна надо больше в 100 раз, то есть 100 кг. Однако во всех этих рассуждениях есть одно упущение. Подумаем и найдем ошибку в рассуждениях.

: -Обратим внимание на последнее рассуждение: «100 цыплят в один день съедают 1 кг зерна, а за 100 дней они съедят в 100 раз больше. »

Ведь за 100 дней (это же более трёх месяцев!) цыплята заметно подрастут и в день будут съедать уже не по 10 г зерна, а граммов по 40 - 50, так как обыкновенная курица в день съедает примерно 100 г зерна. Значит, за 100 дней 100 цыплят съедят не 1 ц зерна, а значительно больше: центнера два-три.

А вот вам последняя задача-головоломка о завязывании узла: « На столе лежит кусок верёвки, вытянутый по прямой. Надо взять его одной рукой за один, другой рукой за другой конец и, не выпуская концов верёвки из рук, завязать узел. » Известное дело, одни задачи легко разбирать, идя от данных к вопросу задачи, а другие, наоборот, идя от вопроса задачи к данным.

Ну, вот мы и попытались разобрать эту задачу, идя от вопроса к данным. Пусть узел на верёвке уже имеется, а концы её находятся в руках и не выпускаются. Попытаемся от решённой задачи вернуться к её данным, к исходному положению: верёвка лежит, вытянутая на столе, и концы её не выпускаются из рук.

Оказывается, что если выправить верёвку, не выпуская концов её из рук, то левая рука, идя под вытянутой верёвкой и над правой рукой, держит правый конец верёвки; а правая рука, идя над верёвкой и под левой рукой, держит левый конец верёвки

Думаю после такого разбора задачи всем стало ясно, как завязать узел на верёвке, надо проделать всё в обратном порядке.

Ещё два приёма быстрого умножения.

Я покажу вам, как быстро умножать такие числа, как например 24 и 26, 63 и 67, 84 и 86 ит. п. , то есть когда в сомножителях десятк"ов поровну, а единицы составляют вместе ровно 10. Задавайте примеры.

* 34 и 36, 53 и 57, 72 и 78,

* Получится 1224, 3021, 5616.

Например, надо 53 умножить на 57. Я 5 умножаю на 6 (на 1 больше, чем 5), получается 30 - столько сотен в произведении; 3 умножаю на 7, получается 21 - столько единиц в произведении. Значит, 53 X 57 = 3021.

* А как это объяснить?

(50 + 3) X 57 = 50 X 57 + 3 X 57 = 50 X (50 + 7) +3 X (50 + 7) = 50 X 50 + 7 X 50 + 3 х 50 + 3 X 7 = 2500 + + 50 X (7 + 3) + 3 X 7 = 2500 + 50 X 10 + 3 X 7 = =: 25 сот. + 5 сот. +3 X 7 = 30 сот. + 3 X 7 = 5 X 6 сот. + 21.

Посмотрим, как можно быстро перемножать двузначные числа в пределах 20. Например, чтобы умножить 14 на 17, надо сложить единицы 4 и 7, получится 11 -столько будет десятков в произведении (то есть 10 единиц). Затем надо 4 умножить на 7, получится 28 - столько будет единиц в произведении. Кроме того, к полученным числам 110 и 28 надо прибавить ещё ровно 100. Значит, 14 X 17 = 100 + 110 + 28 = 238. В самом деле:

14 X 17 = 14 X (10 + 7) = 14 X 10 + 14 X 7 = (10 + + 4) X 10 + (10 + 4) X 7 = 10 X 10 + 4 X 10 + 10 X 7 + 4 X 7 = 100 +(4 + 7) X 10 + 4 X 7 = 100+ 110 + + 28.

После этого мы решили ещё такие примеры: 13 х 16 = 100 + (3 + 6) X 10 + 3 х 6 = 100 + 90 + + 18 = 208; 14 X 18 = 100 + 120 + 32 = 252.

Умножение на счётах

Вот несколько приемов, пользуясь которыми всякий умеющий быстро складывать на счётах сможет проворно выполнять встречающиеся на практике примеры у м н о ж е н и я.

Умножение на 2 и на 3 заменяется двукратным и троекратным сложением.

При умножении на 4 умножают сначала на 2 и складывают этот результат с самим собой.

Умножение числа на 5 выполняется на счётах так: переносят все число одной проволокой выше, то есть умножают его на 10, а затем делят это 10-кратное число пополам (как делить на 2 с помощью счётов.

Вместо умножения на 6 умножают на 5 и прибавляют умножаемое.

Вместо умножения на 7, умножают на 10 и отнимают умножаемое три раза.

Умножение на 8 заменяют умножением на 10 минус два умножаемых.

Точно так же умножают на 9: заменяют умножением на 10 минус одно умножаемое.

При умножении на 10 переносят, как мы уже сказали, все числа одной проволокой выше.

Читатель, вероятно, уже сам сообразит, как надо поступать при умножении на числа, большие 10, и какого рода замены тут окажутся наиболее удобными. Множитель 11 надо, конечно, заменить на 10 + 1. Множитель 12 заменяют на 10 + 2 или практически- на 2+10, т. е. сначала откладывают удвоенное число, а затем прибавляют удесятеренное. Множитель 13 заменяется на 10 + 3 и т. д.

Рассмотрим несколько особых случаев для множителей первой сотни:

Легко видеть, между прочим, что с помощью счётов очень удобно умножать на такие числа, как на 22, 33, 44, 55 и т. п. ; поэтому надо стремиться при разбивке множителей пользоваться подобными числами с одинаковыми цифрами.

К сходным приемам прибегают и при умножении на числа, большие 100. Если подобные искусственные приемы утомительны, то мы всегда, конечно, можем умножить с помощью счётов по общему правилу, умножая каждую цифру множителя и записывая частные произведения - это все же дает некоторое сокращение времени.

„Русский" способ умножения

Вы не можете выполнить умножения многозначных чисел,- хотя бы даже двузначных,- если не помните наизусть всех результатов умножения однозначных чисел, т. е. того, что называется таблицей умножения. В старинной «Арифметике» Магницкого, о которой мы уже упоминали, необходимость твердого знания таблицы умножения воспета в таких (чуждых для современного слуха) стихах:

Аще кто не твердитъ таблицы и гордитъ, Не можетъ познати числомъ что множати

И по все науки несвободъ от муки, Колико не учитъ туне ся удручитъ

И в пользу не будетъ аще ю забудетъ.

Автор этих стихов, очевидно, не знал или упустил из виду, что существует способ перемножать числа и без знания таблицы умножения. Способ этот, похожий на наши школьные приемы, употреблен был в обиходе русских крестьян и унаследован ими от глубокой древности.

Сущность его в том, что умножение любых двух чисел сводится к ряду последовательных делений одного числа пополам при одновременном удвоении другого числа. Вот пример:

Деление пополам продолжают до тех пор), пека в частном не получится 1, параллельно удваивая другое число. Последнее удвоенное число и дает искомый результат. Нетрудна понять, на чем этот способ основан: произведение не измен я-ется, если один множитель уменьшить вдвое, а другой - вдвое же увеличить. Ясно поэтому, что в результате мното-кратного повторения этой операции получается искомое произведение.

Однако как поступить, если при этом нрих. одится делить пополам число нечетное?

Народный способ легко выходит из этого затруднения. Надо, гласит правило, в случае нечетного числа о ткинуть единицу и делить остаток пополам; но зато к поел еднему числу правого столбца нужно будет прибавить все те числа этого столбца, которые стоят против н е ч е т н ы х чисел левого столбца- сумма и будет искомы? л произведением. Практически это делают так, что все строки с четными левыми числами зачеркивают; остаются только те, которые содержат налево нечетное число.

Приведем пример (звездочки указывают, что данную строку надо зачеркнуть):

Сложив не зачеркнутые числа, получаем вполне правильный результат: 17 + 34 + 272 = 32 На чем основан этот прием?

Правильность приема станет ясна, если принять во внимание, что

19Х 17 = (18+ 1)Х 17= 18X17+17, 9Х34 = (8 + 1)Х34=; 8Х34 + 34 и т. д.

Ясно, что числа 17, 34 и т. п. , утрачиваемые при делении нечетного числа пополам, необходимо прибавить к результату последнего умножения, чтобы получить произведение.

Примеры ускоренного умножения

Мы упоминали раньше, что для выполнения тех отдельных действий умножения, на которые распадается каждый из указанных выше приемов, существуют также удобные способы. Некоторые из них весьма несложны и удобно применимы они настолько облегчают вычисления, что не мешает вообще запомнить их, чтобы пользоваться при обычных расчетах.

Таков, например, прием перекрестного умножения, весьма удобный при действии с двузначными числами. Способ не нов; он восходит к грекам и индусам и в старину назывался «способом молнии», или «умножением крестиком». Теперь он забыт, и о нем не мешает напомнить1.

Пусть требуется перемножить 24X32. Мысленно располагаем число по следующей схеме, одно под другим:

Теперь последовательно производим следующие действия:

1)4X2 = 8 - это последняя цифра результата.

2)2X2 = 4; 4X3=12; 4+12=16; 6 - предпоследняя цифра результата; 1 запоминаем.

3)2X3 = 6, да еще удержанная в уме единица, имеем

7- это первая цифра результата.

Получаем все цифры произведения: 7, 6, 8 -- 768.

После непродолжительного упражнения прием этот усваивается очень легко.

Другой способ, состоящий в употреблении так называемых „дополнений", удобно применяется в тех случаях, когда перемножаемые числа близки к 100.

Предположим, что требуется перемножить 92X96. „Дополнение" для 92 до 100 будет 8, для 96 - 4. Действие производят по следующей схеме: множители: 92 и 96 „дополнения": 8 и 4.

Первые две цифры результата получаются простым вычитанием из множителя „дополнения" множимого или наоборот; т. е. из 92 вычитают 4 или из 96 вычитают 8.

8том и другом случае имеем 88; к этому числу приписывают произведение „дополнений": 8X4 = 32. Получаем результат 8832.

Что полученный результат должен быть верен, наглядно видно из следующих преобразований:

92х9б= 88X96 = 88(100-4) = 88 X 100-88X4

1 4X96= 4 (88 + 8)= 4Х 8 + 88X4 92х96 8832+0

Еще пример. Требуется перемножить 78 на 77: множители: 78 и 77 „дополнения": 22 и 23.

78 - 23 = 55, 22 X 23 = 506 , 5500 + 506 = 6006.

Третий пример. Перемножить 99 X 9.

множители: 99 и 98 „дополнения": 1 и 2.

99-2 = 97, 1X2= 2.

В данном случае надо помнить, что 97 означает здесь число сотен. Поэтому складываем.







второй способ умножения:

НА Руси крестьяне не применяли таблицы умножения, но прекрасно считали произведение многозначных чисел.

На Руси, начиная с глубокой древности и почти до восемнадцатого века, русские люди в своих вычислениях обходились без умножения и деления. Они применяли лишь два арифметических действия – сложение и вычитание. Да еще так называемое «удвоение» и «раздвоение». Но потребности торговой и иной деятельности требовали производить умножение достаточно больших чисел, как двузначных так и трехзначных. Для этого существовал свой особый способ умножения таких чисел.

Сущность старинного русского способа умножения состоит в том, что умножение любых двух чисел сводилось к ряду последовательных делений одного числа пополам (последовательное раздвоение) при одновременном удвоении другого числа.

Например, если в произведении 24 ∙ 5 множимое 24 уменьшить в два раза (раздвоить), а множимое увеличить в два раза (удвоить), т.е. взять произведение 12 ∙ 10, то произведение остается равным числу 120. Это свойство произведения заметили наши далекие предки и научились применять его при умножении чисел своим особым старинным русским способом умножения.

Умножим этим способом 32 ∙ 17..
32 ∙ 17
16 ∙ 34
8 ∙ 68
4 ∙ 136
2 ∙ 272
1 ∙544 Ответ: 32 ∙ 17 = 544.

В разобранном примере деление на два – "раздвоение" происходит без остатка. А как быть, если множитель не делится на два без остатка? И это казалось по плечу древним вычислителям. В этом случае поступали так:
21 ∙ 17
10 ∙ 34
5 ∙ 68
2 ∙ 136
1 ∙ 272
357 Ответ: 357.

Из примера видно, что если множимое не делится на два, то от него сначала отнимали единицу, потом полученный результат раздваивали» и так 5 до конца. Затем все строчки с четными множимыми вычеркивали (2-я, 4-ая, 6-ая и т.д.), а все правые части оставшихся строчек складывали и получали искомое произведение.

Как же рассуждали древние вычислители, обосновывая свой способ вычисления? А вот как: 21 ∙ 17 = 20 ∙ 17 + 17.
Число 17 запоминается, а произведение 20 ∙ 17 = 10∙ 34 (раздваиваем – удваиваем) и записываем. Произведение 10 ∙ 34 = 5 ∙ 68 (раздваиваем – удваиваем), а как бы лишнее произведение 10∙34 вычеркиваем. Так как 5 * 34 = 4 ∙ 68 + 68, то число 68 запоминается, т.е. третья строка не вычеркивается, а 4 ∙ 68 = 2 ∙ 136 = 1 ∙ 272 (раздваиваем – удваиваем), при этом четвертая строка, содержащая как бы лишнее произведение 2 ∙ 136, вычеркивается, а число 272 запоминается. Вот и получается, что, чтобы умножить 21 на 17, надо сложить числа 17, 68 и 272 – это как раз и есть равые части строк именно с нечетными множимыми.
Русский способ умножения и элегантен и экстравагантен одновременно





Предлагаю Вашему вниманию три примера в цветных картинках (в правом верхнем углу проверочный столбик ).

Пример №1 : 12 × 321 = 3852
Рисуем первое число сверху вниз, слева на право: одна зелёненькая палочка (1 ); две оранжевых палочки (2 ). 12 нарисовали.
Рисуем второе число снизу вверх, слева на право: три голубеньких палочки (3 ); две красненькие (2 ); одну сиреневенькую (1 ). 321 нарисовали.

Теперь простым карандашиком по рисунку прогуляемся, точечки пересечения чисел-палочек на части разделим и приступим к подсчёту точечек. Двигаемся справа налево (по часовой стрелке): 2 , 5 , 8 , 3 . Число-результат будем «собирать» слева направо (против часовой стрелки) и… вуаля, получили 3852
























Пример №2 : 24 × 34 = 816
В этом примере есть нюансы. При подсчёте точечек в первой части получилось16 . Единичку отправляем-прибавляем к точечкам второй части (20 + 1 )…












Пример №3 : 215 × 741 = 159315
Без комментариев








На первых порах показался мне несколько вычурным, но при этом интригующим и удивительно гармоничным. На пятом примере поймала себя на мысли, что умножение идёт в лёт и работает в режиме автопилота : рисуем, точечки считаем, про таблицу умножения не вспоминаем, вроде как мы её вообще не знаем.



Если честно, то осуществляя проверку рисовательного способа умножения и обратившись к умножению столбиком, и не раз, и не два к своему стыду отметила некоторые притормаживания, свидетельствовавшие о том, что таблица умножения у меня проржавела в некоторых местах и забывать её таки не стоит. При работе с более «серьёзными» числами рисовательный способ умножения стал чересчур громоздким, а умножение столбиком пошло в радость.

P.S. : Слава и хвала родному столбику!
В плане построения способ непритязательный и компактный, очень даже скоростной, память тренирует – таблицу умножения забывать не дозволяет.


И посему, настоятельно рекомендую и себе и Вам по возможности забывать про калькуляторы в телефонах и на компьютерах; и периодически баловать себя умножением столбиком. А то не ровен час и сюжет из фильма «Восстание машин» развернётся не на экране кинотеатра, а на нашей с Вами кухне или лужайке рядом с домом…


Три раза через левое плечо…, стучим по дереву… …и главное не забываем про гимнастику для ума!

УЧИМ ТАБЛИЦУ УМНОЖЕНИЯ!!!

опубликовано 20.04.2012
Посвящается Елене Петровне Каринской ,
моему школьному преподавателю математики и классному руководителю
Алма-Ата, РОФМШ , 1984–1987 год

«Наука только тогда достигает совершенства, когда ей удаётся пользоваться математикой» . Карл Генрих Маркс
эти слова были начертаны над доской в нашем кабинете математики;-)
Уроки информатики (лекционные материалы и практикумы)


Что такое умножение?
Это действие сложения.
Но не слишком-то приятное,
Потому что мно-го-крат-ное…
Тим Собакин

Попытаемся сделать это действие
приятным и увлекательным;-)

СПОСОБЫ УМНОЖЕНИЯ БЕЗ ТАБЛИЦЫ УМНОЖЕНИЯ (гимнастика для ума)

Предлагаю читателям зелёных страничек два способа умножения, в которых не используется таблица умножения;-) Надеюсь, что этот материал придётся по душе преподавателям информатики, который они могут использовать при проведении факультативных занятий.

Способ этот, был употребителен в обиходе русских крестьян и унаследован ими от глубокой древности. Сущность его в том, что умножение любых двух чисел сводится к ряду последовательных делений одного числа пополам при одновременном удвоении другого числа, таблица умножения в этом деле без надобности:-)

Деление пополам продолжают до тех пор, пока в частном не получится 1, при этом параллельно удваивают другое число. Последнее удвоенное число и даёт искомый результат (рисунок 1). Нетрудно понять, на чём этот способ основан: произведение не изменяется, если один множитель уменьшить вдвое, а другой вдвое же увеличить. Ясно поэтому, что в результате многократного повторения этой операции получается искомое произведение.


Однако как поступить, если при этом приходится делить пополам нечётное число ? В этом случае от нечётного числа откидываем единицу и делим остаток пополам, при этом к последнему числу правого столбца нужно будет прибавить все те числа этого столбца, которые стоят против нечётных чисел левого столбца – сумма и будет искомым произведением (рисунки: 2, 3).
Иными словами все строки с чётными левыми числами зачёркиваем; оставляем, а затем суммируем не зачёркнутые числа правого столбца.

Для рисунка 2: 192 + 48 + 12 = 252
Правильность приёма станет ясна, если принять во внимание, что:
5 × 48 = (4 + 1) × 48 = 4 × 48 + 48
21 × 12 = (20 + 1) × 12 = 20 × 12 + 12
Ясно, что числа 48 , 12 , утрачиваемые при делении нечётного числа пополам, необходимо прибавить к результату последнего умножения, чтобы получить произведение.
Русский способ умножения и элегантен и экстравагантен одновременно;-)

§ Логическая задачка о Змее Горыныче и прославленных русских богатырях на зелёной страничке «Кто из богатырей победил Змея Горыныча?»
решение логических задач средствами алгебры логики
Для тех, кто любит учиться! Для тех, кому в радость гимнастика для ума ;-)
§ Решение логических задач табличным способом

Продолжаем разговор:-)

Китайский??? Рисовательный способ умножения

С этим способом умножения меня познакомил сын, предоставив в моё распоряжение несколько листочков из блокнота с готовыми решениями в виде замысловатых рисунков. Закипел процесс расшифровки алгоритма рисовательного способа умножения:-) Для наглядности решила прибегнуть к помощи цветных карандашей, и… лёд тронулся господа присяжные:-)
Предлагаю Вашему вниманию три примера в цветных картинках (в правом верхнем углу проверочный столбик ).

Пример №1 : 12 × 321 = 3852
Рисуем первое число сверху вниз, слева на право: одна зелёненькая палочка (1 ); две оранжевых палочки (2 ). 12 нарисовали:-)
Рисуем второе число снизу вверх, слева на право: три голубеньких палочки (3 ); две красненькие (2 ); одну сиреневенькую (1 ). 321 нарисовали:-)

Теперь простым карандашиком по рисунку прогуляемся, точечки пересечения чисел-палочек на части разделим и приступим к подсчёту точечек. Двигаемся справа налево (по часовой стрелке): 2 , 5 , 8 , 3 . Число-результат будем «собирать» слева направо (против часовой стрелки) и… вуаля, получили 3852 :-)


Пример №2 : 24 × 34 = 816
В этом примере есть нюансы;-) При подсчёте точечек в первой части получилось 16 . Единичку отправляем-прибавляем к точечкам второй части (20 + 1 )…


Пример №3 : 215 × 741 = 159315
Без комментариев:-)


На первых порах показался мне несколько вычурным, но при этом интригующим и удивительно гармоничным. На пятом примере поймала себя на мысли, что умножение идёт в лёт:-) и работает в режиме автопилота : рисуем, точечки считаем, про таблицу умножения не вспоминаем, вроде как мы её вообще не знаем:-)))

Если честно, то осуществляя проверку рисовательного способа умножения и обратившись к умножению столбиком, и не раз, и не два к своему стыду отметила некоторые притормаживания, свидетельствовавшие о том, что таблица умножения у меня проржавела в некоторых местах:-(и забывать её таки не стоит. При работе с более «серьёзными» числами рисовательный способ умножения стал чересчур громоздким, а умножение столбиком пошло в радость.

Таблица умножения (эскиз тыльной стороны блокнота)


P.S. : Слава и хвала родному советскому столбику!
В плане построения способ непритязательный и компактный, очень даже скоростной, память тренирует – таблицу умножения забывать не дозволяет:-) И посему, настоятельно рекомендую и себе и Вам по возможности забывать про калькуляторы в телефонах и на компьютерах;-) и периодически баловать себя умножением столбиком. А то не ровен час и сюжет из фильма «Восстание машин» развернётся не на экране кинотеатра, а на нашей с Вами кухне или лужайке рядом с домом…
Три раза через левое плечо…, стучим по дереву… :-))) …и главное не забываем про гимнастику для ума!

Для любознательных : Умножение обозначается знаком [ × ] или [ · ]
Знак [ × ] ввёл английский математик Уильям Оутред в 1631 году.
Знак [ · ] ввёл немецкий учёный Готфрид Вильгельм Лейбниц в 1698 году.
В буквенном обозначении эти знаки упускаются и вместо a × b или a · b пишут ab .

В копилочку веб-мастера : Некоторые математические символы на HTML

° ° или ° градус
± ± или ± плюс-минус
¼ ¼ или ¼ дробь – одна четверть
½ ½ или ½ дробь – одна вторая
¾ ¾ или ¾ дробь – три четверти
× × или × знак умножения
÷ ÷ или ÷ знак деления
ƒ ƒ или ƒ знак функции
′ или ′ одиночный штрих – минуты и футы
″ или ″ двойной штрих – секунды и дюймы
≈ или ≈ знак примерного равенства
≠ или ≠ знак не равно
≡ или ≡ тождественно
> > или > больше
< < или меньше
≥ или ≥ больше или равно
≤ или ≤ меньше или равно
∑ или ∑ знак суммирования
√ или √ квадратный корень (радикал)
∞ или ∞ бесконечность
Ø Ø или Ø диаметр
∠ или ∠ угол
⊥ или ⊥ перпендикулярно