Полные сведения о формулах в Excel. Как в экселе посчитать проценты от общей суммы

Приближенные вычисления с помощью дифференциала

На данном уроке мы рассмотрим широко распространенную задачу о приближенном вычислении значения функции с помощью дифференциала . Здесь и далее речь пойдёт о дифференциалах первого порядка, для краткости я часто буду говорить просто «дифференциал». Задача о приближенных вычислениях с помощью дифференциала обладает жёстким алгоритмом решения, и, следовательно, особых трудностей возникнуть не должно. Единственное, есть небольшие подводные камни, которые тоже будут подчищены. Так что смело ныряйте головой вниз.

Кроме того, на странице присутствуют формулы нахождения абсолютной и относительной погрешность вычислений. Материал очень полезный, поскольку погрешности приходится рассчитывать и в других задачах. Физики, где ваши аплодисменты? =)

Для успешного освоения примеров необходимо уметь находить производные функций хотя бы на среднем уровне, поэтому если с дифференцированием совсем нелады, пожалуйста, начните с урока Как найти производную? Также рекомендую прочитать статью Простейшие задачи с производной , а именно параграфы о нахождении производной в точке и нахождении дифференциала в точке . Из технических средств потребуется микрокалькулятор с различными математическими функциями. Можно использовать Эксель, но в данном случае он менее удобен.

Практикум состоит из двух частей:

– Приближенные вычисления с помощью дифференциала функции одной переменной.

– Приближенные вычисления с помощью полного дифференциала функции двух переменных.

Кому что нужно. На самом деле можно было разделить богатство на две кучи, по той причине, что второй пункт относится к приложениям функций нескольких переменных . Но что поделать, вот люблю я длинные статьи.

Приближенные вычисления
с помощью дифференциала функции одной переменной

Рассматриваемое задание и его геометрический смысл уже освещёны на уроке Что такое производная? , и сейчас мы ограничимся формальным рассмотрением примеров, чего вполне достаточно, чтобы научиться их решать.

В первом параграфе рулит функция одной переменной. Как все знают, она обозначается через или через . Для данной задачи намного удобнее использовать второе обозначение. Сразу перейдем к популярному примеру, который часто встречается на практике:

Пример 1

Решение: Пожалуйста, перепишите в тетрадь рабочую формулу для приближенного вычисления с помощью дифференциала :

Начинаем разбираться, здесь всё просто!

На первом этапе необходимо составить функцию . По условию предложено вычислить кубический корень из числа: , поэтому соответствующая функция имеет вид: . Нам нужно с помощью формулы найти приближенное значение .

Смотрим на левую часть формулы , и в голову приходит мысль, что число 67 необходимо представить в виде . Как проще всего это сделать? Рекомендую следующий алгоритм: вычислим данное значение на калькуляторе:
– получилось 4 с хвостиком, это важный ориентир для решения.

В качестве подбираем «хорошее» значение, чтобы корень извлекался нацело . Естественно, это значение должно быть как можно ближе к 67. В данном случае: . Действительно: .

Примечание: Когда с подбором всё равно возникает затруднение, просто посмотрите на скалькулированное значение (в данном случае ), возьмите ближайшую целую часть (в данном случае 4) и возведите её нужную в степень (в данном случае ). В результате и будет выполнен нужный подбор: .

Если , то приращение аргумента: .

Итак, число 67 представлено в виде суммы

Сначала вычислим значение функции в точке . Собственно, это уже сделано ранее:

Дифференциал в точке находится по формуле:
– тоже можете переписать к себе в тетрадь.

Из формулы следует, что нужно взять первую производную:

И найти её значение в точке :

Таким образом:

Всё готово! Согласно формуле :

Найденное приближенное значение достаточно близко к значению , вычисленному с помощью микрокалькулятора.

Ответ:

Пример 2

Вычислить приближенно , заменяя приращения функции ее дифференциалом.

Это пример для самостоятельного решения. Примерный образец чистового оформления и ответ в конце урока. Начинающим сначала рекомендую вычислить точное значение на микрокалькуляторе, чтобы выяснить, какое число принять за , а какое – за . Следует отметить, что в данном примере будет отрицательным.

У некоторых, возможно, возник вопрос, зачем нужна эта задача, если можно всё спокойно и более точно подсчитать на калькуляторе? Согласен, задача глупая и наивная. Но попытаюсь немного её оправдать. Во-первых, задание иллюстрирует смысл дифференциала функции. Во-вторых, в древние времена, калькулятор был чем-то вроде личного вертолета в наше время. Сам видел, как из местного политехнического института году где-то в 1985-86 выбросили компьютер размером с комнату (со всего города сбежались радиолюбители с отвертками, и через пару часов от агрегата остался только корпус). Антиквариат водился и у нас на физмате, правда, размером поменьше – где-то с парту. Вот так вот и мучились наши предки с методами приближенных вычислений. Конная повозка – тоже транспорт.

Так или иначе, задача осталась в стандартном курсе высшей математики, и решать её придётся. Это основной ответ на ваш вопрос =)

Пример 3

в точке . Вычислить более точное значение функции в точке с помощью микрокалькулятора, оценить абсолютную и относительную погрешность вычислений.

Фактически то же самое задание, его запросто можно переформулировать так: «Вычислить приближенное значение с помощью дифференциала»

Решение: Используем знакомую формулу:
В данном случае уже дана готовая функция: . Ещё раз обращаю внимание, что для обозначения функции вместо «игрека» удобнее использовать .

Значение необходимо представить в виде . Ну, тут легче, мы видим, что число 1,97 очень близко к «двойке», поэтому напрашивается . И, следовательно: .

Используя формулу , вычислим дифференциал в этой же точке.

Находим первую производную:

И её значение в точке :

Таким образом, дифференциал в точке:

В результате, по формуле :

Вторая часть задания состоит в том, чтобы найти абсолютную и относительную погрешность вычислений.

Абсолютная и относительная погрешность вычислений

Абсолютная погрешность вычислений находится по формуле:

Знак модуля показывает, что нам без разницы, какое значение больше, а какое меньше. Важно, насколько далеко приближенный результат отклонился от точного значения в ту или иную сторону.

Относительная погрешность вычислений находится по формуле:
, или, то же самое:

Относительная погрешность показывает, на сколько процентов приближенный результат отклонился от точного значения. Существует версия формулы и без домножения на 100%, но на практике я почти всегда вижу вышеприведенный вариант с процентами.


После короткой справки вернемся к нашей задаче, в которой мы вычислили приближенное значение функции с помощью дифференциала.

Вычислим точное значение функции с помощью микрокалькулятора:
, строго говоря, значение всё равно приближенное, но мы будем считать его точным. Такие уж задачи встречаются.

Вычислим абсолютную погрешность:

Вычислим относительную погрешность:
, получены тысячные доли процента, таким образом, дифференциал обеспечил просто отличное приближение.

Ответ: , абсолютная погрешность вычислений , относительная погрешность вычислений

Следующий пример для самостоятельного решения:

Пример 4

Вычислить приближенно с помощью дифференциала значение функции в точке . Вычислить более точное значение функции в данной точке, оценить абсолютную и относительную погрешность вычислений.

Примерный образец чистового оформления и ответ в конце урока.

Многие обратили внимание, что во всех рассмотренных примерах фигурируют корни. Это не случайно, в большинстве случаев в рассматриваемой задаче действительно предлагаются функции с корнями.

Но для страждущих читателей я раскопал небольшой пример с арксинусом:

Пример 5

Вычислить приближенно с помощью дифференциала значение функции в точке

Этот коротенький, но познавательный пример тоже для самостоятельного решения. А я немного отдохнул, чтобы с новыми силами рассмотреть особое задание:

Пример 6

Вычислить приближенно с помощью дифференциала , результат округлить до двух знаков после запятой.

Решение: Что нового в задании? По условию требуется округлить результат до двух знаков после запятой. Но дело не в этом, школьная задача округления, думаю, не представляет для вас сложностей. Дело в том, что у нас дан тангенс с аргументом, который выражен в градусах . Что делать, когда вам предлагается для решения тригонометрическая функция с градусами? Например, и т. д.

Алгоритм решения принципиально сохраняется, то есть необходимо, как и в предыдущих примерах, применить формулу

Записываем очевидную функцию

Значение нужно представить в виде . Серьёзную помощь окажет таблица значений тригонометрических функций . Кстати, кто её не распечатал, рекомендую это сделать, поскольку заглядывать туда придется на протяжении всего курса изучения высшей математики.

Анализируя таблицу, замечаем «хорошее» значение тангенса, которое близко располагается к 47 градусам:

Таким образом:

После предварительного анализа градусы необходимо перевести в радианы . Так, и только так!

В данном примере непосредственно из тригонометрической таблицы можно выяснить, что . По формуле перевода градусов в радианы: (формулы можно найти в той же таблице).

Дальнейшее шаблонно:

Таким образом: (при вычислениях используем значение ). Результат, как и требовалось по условию, округлён до двух знаков после запятой.

Ответ:

Пример 7

Вычислить приближенно с помощью дифференциала , результат округлить до трёх знаков после запятой.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как видите, ничего сложного, градусы переводим в радианы и придерживаемся обычного алгоритма решения.

Приближенные вычисления
с помощью полного дифференциала функции двух переменных

Всё будет очень и очень похоже, поэтому, если вы зашли на эту страницу именно этим заданием, то сначала рекомендую просмотреть хотя бы пару примеров предыдущего пункта.

Для изучения параграфа необходимо уметь находить частные производные второго порядка , куда ж без них. На вышеупомянутом уроке функцию двух переменных я обозначал через букву . Применительно к рассматриваемому заданию удобнее использовать эквивалентное обозначение .

Как и для случая функции одной переменной, условие задачи может быть сформулировано по-разному, и я постараюсь рассмотреть все встречающиеся формулировки.

Пример 8

Решение: Как бы ни было записано условие, в самом решении для обозначения функции, повторюсь, лучше использовать не букву «зет», а .

А вот и рабочая формула:

Перед нами фактически старшая сестра формулы предыдущего параграфа. Переменная только прибавилась. Да что говорить, сам алгоритм решения будет принципиально таким же !

По условию требуется найти приближенное значение функции в точке .

Число 3,04 представим в виде . Колобок сам просится, чтобы его съели:
,

Число 3,95 представим в виде . Дошла очередь и до второй половины Колобка:
,

И не смотрите на всякие лисьи хитрости, Колобок есть – надо его съесть.

Вычислим значение функции в точке :

Дифференциал функции в точке найдём по формуле:

Из формулы следует, что нужно найти частные производные первого порядка и вычислить их значения в точке .

Вычислим частные производные первого порядка в точке :

Полный дифференциал в точке :

Таким образом, по формуле приближенное значение функции в точке :

Вычислим точное значение функции в точке :

Вот это значение является абсолютно точным.

Погрешности рассчитываются по стандартным формулам, о которых уже шла речь в этой статье.

Абсолютная погрешность:

Относительная погрешность:

Ответ: , абсолютная погрешность: , относительная погрешность:

Пример 9

Вычислить приближенное значение функции в точке с помощью полного дифференциала, оценить абсолютную и относительную погрешность.

Это пример для самостоятельного решения. Кто остановится подробнее на данном примере, тот обратит внимание на то, что погрешности вычислений получились весьма и весьма заметными. Это произошло по следующей причине: в предложенной задаче достаточно велики приращения аргументов: . Общая закономерность такова – чем больше эти приращения по абсолютной величине, тем ниже точность вычислений. Так, например, для похожей точки приращения будут небольшими: , и точность приближенных вычислений получится очень высокой.

Данная особенность справедлива и для случая функции одной переменной (первая часть урока).

Пример 10


Решение : Вычислим данное выражение приближенно с помощью полного дифференциала функции двух переменных:

Отличие от Примеров 8-9 состоит в том, что нам сначала необходимо составить функцию двух переменных: . Как составлена функция, думаю, всем интуитивно понятно.

Значение 4,9973 близко к «пятерке», поэтому: , .
Значение 0,9919 близко к «единице», следовательно, полагаем: , .

Вычислим значение функции в точке :

Дифференциал в точке найдем по формуле:

Для этого вычислим частные производные первого порядка в точке .

Производные здесь не самые простые, и следует быть аккуратным:

;


.

Полный дифференциал в точке :

Таким образом, приближенное значение данного выражения:

Вычислим более точное значение с помощью микрокалькулятора: 2,998899527

Найдем относительную погрешность вычислений:

Ответ: ,

Как раз иллюстрация вышесказанному, в рассмотренной задаче приращения аргументов очень малы , и погрешность получилась фантастически мизерной.

Пример 11

С помощью полного дифференциала функции двух переменных вычислить приближенно значение данного выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Как уже отмечалось, наиболее частный гость в данном типе заданий – это какие-нибудь корни. Но время от времени встречаются и другие функции. И заключительный простой пример для релаксации:

Пример 12

С помощью полного дифференциала функции двух переменных вычислить приближенно значение функции , если

Решение ближе к дну страницы. Еще раз обратите внимание на формулировки заданий урока, в различных примерах на практике формулировки могут быть разными, но это принципиально не меняет сути и алгоритма решения.

Если честно, немного утомился, поскольку материал был нудноватый. Непедагогично это было говорить в начале статьи, но сейчас-то уже можно =) Действительно, задачи вычислительной математики обычно не очень сложны, не очень интересны, самое важное, пожалуй, не допустить ошибку в обычных расчётах.

Да не сотрутся клавиши вашего калькулятора!

Решения и ответы:

Пример 2: Решение: Используем формулу:
В данном случае: , ,

Таким образом:
Ответ:

Пример 4: Решение: Используем формулу:
В данном случае: , ,

Формула - это математическое выражение, которое создается для вычисления результата и которое может зависеть от содержимого других ячеек. Формула в ячейке может содержать данные, ссылки на другие ячейки, а также обозначение действий, которые необходимо выполнить.

Использование ссылок на ячейки позволяет пересчитывать результат по формулам, когда происходят изменения содержимого ячеек, включенных в формулы.

В Excel формулы начинаются со знака =. Скобки () могут использоваться для определения порядка математических операции.

Excel поддерживает следующие операторы:

  • Арифметические операции:
    • сложение (+);
    • умножение (*);
    • нахождение процента (%);
    • вычитание (-);
    • деление (/);
    • экспонента (^).
  • Операторы сравнения:
    • = равно;
    • < меньше;
    • > больше;
    • <= меньше или равно;
    • >= больше или равно;
    • <> не равно.
  • Операторы связи:
    • : диапазон;
    • ; объединение;
    • & оператор соединения текстов.

Таблица 22. Примеры формул

Упражнение

Вставка формулы -25-А1+АЗ

Предварительно введите любые числа в ячейки А1 и A3.

  1. Выберите необходимую ячейку, например В1.
  2. Начните ввод формулы со знака=.
  3. Введите число 25, затем оператор (знак -).
  4. Введите ссылку на первый операнд, например щелчком мыши на нужную ячейку А1.
  5. Введите следующий оператор(знак +).
  6. Щелкните мышью в той ячейке, которая является вторым операндом в формуле.
  7. Завершите ввод формулы нажатием клавиши Enter . В ячейке В1 получите результат.

Автосуммирование

Кнопка Автосумма (AutoSum) - ∑ может использоваться для автоматического создания формулы, которая суммирует область соседних ячеек, находящихся непосредственно слева в данной строке и непосредственно выше в данном столбце.

  1. Выберите ячейку, в которую надо поместить результат суммирования.
  2. Щелкните кнопку Автосумма - ∑ или нажмите комбинацию клавиш Alt+=. Excel примет решение, какую область включить в диапазон суммирования, и выделит ее пунктирной движущейся рамкой, называемой границей.
  3. Нажмите Enter для принятия области, которую выбрала программа Excel, или выберите с помощью мыши новую область и затем нажмите Enter.

Функция "Автосумма" автоматически трансформируется в случае добавления и удаления ячеек внутри области.

Упражнение

Создание таблицы и расчет по формулам

  1. Введите числовые данные в ячейки, как показано в табл. 23.
А В С D Б F
1
2 Магнолия Лилия Фиалка Всего
3 Высшее 25 20 9
4 Среднее спец. 28 23 21
5 ПТУ 27 58 20
в Другое 8 10 9
7 Всего
8 Без высшего

Таблица 23. Исходная таблица данных

  1. Выберите ячейку В7, в которой будет вычислена сумма по вертикали.
  2. Щелкните кнопку Автосумма - ∑ или нажмите Alt+= .
  3. Повторите действия пунктов 2 и 3 для ячеек С7 и D7.

Вычислите количество сотрудников без высшего образования (по формуле В7-ВЗ).

  1. Выберите ячейку В8 и наберите знак (=).
  2. Щелкните мышью в ячейке В7, которая является первым операндом в формуле.
  3. Введите с клавиатуры знак (-) и щелкните мышью в ячейке ВЗ, которая является вторым операндом в формуле (будет введена формула).
  4. Нажмите Enter (в ячейке В8 будет вычислен результат).
  5. Повторите пункты 5-8 для вычислений по соответствующим формулам в ячейках С8 и 08.
  6. Сохраните файл с именем Образование_сотрудников.х1s.

Таблица 24. Результат расчета

А B С D Е F
1 Распределение сотрудников по образованию
2 Магнолия Лилия Фиалка Всего
3 Высшее 25 20 9
4 Среднее спец. 28 23 21
5 ПТУ 27 58 20
6 Другое 8 10 9
7 Всего 88 111 59
8 Без высшего 63 91 50

Тиражирование формул при помощи маркера заполнения

Область ячеек (ячейка) может быть размножена при помощи использования маркера заполнения. Как было показано в предыдущем разделе, маркер заполнения представляет собой контрольную точку в правом нижнем углу выделенной ячейки.

Часто бывает необходимо размножать не только данные, но и формулы, содержащие адресные ссылки. Процесс тиражирования формул при помощи маркера заполнения позволяет колировать формулу при одновременном изменении адресных ссылок в формуле.

  1. Выберите ячейку, содержащую формулу для тиражирования.
  2. Перетащите маркер заполнения в нужном направлении. Формула будет размножена во всех ячейках.

Обычно этот процесс используется при копировании формул внутри строк или столбцов, содержащих однотипные данные. При тиражировании формул с помощью маркера заполнения меняются так называемые относительные адреса ячеек в формуле (подробно относительные и абсолютные ссылки будут описаны далее).

Упражнение

Тиражирование формул

1.Откройте файл Образование_сотрудников.х1s.

  1. Введите в ячейку ЕЗ формулу для автосуммирования ячеек =СУММ(ВЗ:03).
  2. Скопируйте, перетащив маркер заполнения, формулу в ячейки Е4:Е8.
  3. Просмотрите как меняются относительные адреса ячеек в полученных формулах (табл. 25) и сохраните файл.
А В С D Е F
1 Распределение сотрудников по образованию
2 Магнолия Лилия Фиалка Всего
3 Высшее 25 20 9 =СУММ{ВЗ:03)
4 Среднее спец. 28 23 21 =СУММ(В4:04)
5 ПТУ 27 58 20 =СУММ(В5:05)
6 Другое 8 10 9 =СУММ(В6:06)
7 Всего 88 111 58 =СУММ(В7:07)
8 Без высшего 63 91 49 =СУММ(В8:08)

Таблица 25. Изменение адресов ячеек при тиражировании формул

Относительные и абсолютные ссылки

Формулы, реализующие вычисления в таблицах, для адресации ячеек используют так называемые ссылки. Ссылка на ячейку может быть относительной или абсолютной.

Использование относительных ссылок аналогично указанию направления движения по улице - "идти три квартала на север, затем два квартала на запад". Следование этим инструкциям из различных начальных мест будет приводить в разные места назначения.

Например, формула, которая суммирует числа в столбце или строке, затем часто копируется для других номеров строк или столбцов. В таких формулах используются относительные ссылки (см. предыдущий пример в табл. 25).

Абсолютная ссылка на ячейку.иди область ячеек будет всегда ссылаться на один и тот же адрес строки и столбца. При сравнении с направлениями улиц это будет примерно следующее: "Идите на пересечение Арбата и Бульварного кольца". Вне зависимости от места старта это будет приводить к одному и тому же месту. Если формула требует, чтобы адрес ячейки оставался неизменным при копировании, то должна использоваться абсолютная ссылка (формат записи $А$1). Например, когда формула вычисляет доли от общей суммы, ссылка на ячейку, содержащую общую сумму, не должна изменяться при копировании.

Знак доллара ($) появится как перед ссылкой на столбец, так и перед ссылкой на строку (например, $С$2), Последовательное нажатие F4 будет добавлять или убирать знак перед номером столбца или строки в ссылке (С$2 или $С2 - так называемые смешанные ссылки).

  1. Создайте таблицу, аналогичную представленной ниже.

Таблица 26. Расчет зарплаты

  1. В ячейку СЗ введите формулу для расчета зарплаты Иванова =В1*ВЗ.

При тиражировании формулы данного примера с относительными ссылками в ячейке С4 появляется сообщение об ошибке (#ЗНАЧ!), так как изменится относительный адрес ячейки В1, и в ячейку С4 скопируется формула =В2*В4;

  1. Задайте абсолютную ссылку на ячейку В1, поставив курсор в строке формул на В1 и нажав клавишу F4, Формула в ячейке СЗ будет иметь вид =$В$1*ВЗ.
  2. Скопируйте формулу в ячейки С4 и С5.
  3. Сохраните файл (табл. 27) под именем Зарплата.xls.

Таблица 27. Итоги расчета зарплаты

Имена в формулах

Имена в формулах легче запомнить, чем адреса ячеек, поэтому вместо абсолютных ссылок можно использовать именованные области (одна или несколько ячеек). Необходимо соблюдать следующие правила при создании имен:

  • имена могут содержать не более 255 символов;
  • имена должны начинаться с буквы и могут содержать любой символ, кроме пробела;
  • имена не должны быть похожи на ссылки, такие, как ВЗ, С4;
  • имена не должны использовать функции Excel, такие, как СУММ, ЕСЛИ и т. п.

В меню Вставка, Имя существуют две различные команды создания именованных областей: Создать и Присвоить.

Команда Создать позволяет задать (ввести) требуемое имя (только одно ), команда Присвоить использует метки, размещенные на рабочем листе, в качестве имен областей (разрешается создавать сразу несколько имен ).

Создание имени

  1. Выделите ячейку В1 (табл. 26).
  2. Выберите в меню Вставка, Имя (Insert, Name) команду Присвоить (Define) .
  3. Введите имя Часовая ставка и нажмите ОК .
  4. Выделите ячейку В1 и убедитесь, что в поле имени указано Часовая ставка .

Создание нескольких имен

  1. Выделите ячейки ВЗ:С5 (табл. 27).
  2. Выберите в меню Вставка, Имя (Insert, Name) команду Создать (Create) , появится диалоговое окно Создать имена (рис. 88).
  3. Убедитесь, что переключатель в столбце слева помечен и нажмите ОК .
  4. Выделите ячейки ВЗ:СЗ и убедитесь, что в поле имени указано Иванов.

Рис. 88. Диалоговое окно Создать имена

Можно в формулу вставить имя вместо абсолютной ссылки.

  1. В строке формул установите курсор в то место, где будет добавлено имя.
  2. Выберите в меню Вставка, Имя (Insert, Name) команду Вставить (Paste), появится диалоговое окно Вставить имена.
  1. Выберите нужное имя из списка и нажмите ОК.

Ошибки в формулах

Бели при вводе формул или данных допущена ошибка, то в результирующей ячейке появляется сообщение об ошибке. Первым символом всех значений ошибок является символ #. Значения ошибок зависят от вида допущенной ошибки.

Excel может распознать далеко не все ошибки, но те, которые обнаружены, надо уметь исправить.

Ошибка # # # # появляется, когда вводимое число не умещается в ячейке. В этом случае следует увеличить ширину столбца.

Ошибка #ДЕЛ/0! появляется, когда в формуле делается попытка деления на нуль. Чаще всего это случается, когда в качестве делителя используется ссылка на ячейку, содержащую нулевое или пустое значение.

Ошибка #Н/Д! является сокращением термина "неопределенные данные". Эта ошибка указывает на использование в формуле ссылки на пустую ячейку.

Ошибка #ИМЯ? появляется, когда имя, используемое в формуле, было удалено или не было ранее определено. Для исправления определите или исправьте имя области данных, имя функции и др.

Ошибка #ПУСТО! появляется, когда задано пересечение двух областей, которые в действительности не имеют общих ячеек. Чаще всего ошибка указывает, что допущена ошибка при вводе ссылок на диапазоны ячеек.

Ошибка #ЧИСЛО! появляется, когда в функции с числовым аргументом используется неверный формат или значение аргумента.

Ошибка #ЗНАЧ! появляется, когда в формуле используется недопустимый тип аргумента или операнда. Например, вместо числового или логического значения для оператора или функции введен текст.

Кроме перечисленных ошибок, при вводе формул может появиться циклическая ссылка.

Циклическая ссылка возникает тогда, когда формула прямо или косвенно включает ссылки на свою собственную ячейку. Циклическая ссылка может вызывать искажения в вычислениях на рабочем листе и поэтому рассматривается как ошибка в большинстве приложений. При вводе циклической ссылки появляется предупредительное сообщение (рис. 89).

Для исправления ошибки удалите ячейку, которая вызвала циклическую ссылку, отредактируйте или введите заново формулу.

Функции в Excel

Более сложные вычисления в таблицах Excel осуществляются с помощью специальных функций (рис. 90). Список категорий функций доступен при выборе команды Функция в меню Вставка (Insert, Function).

Финансовые функции осуществляют такие расчеты, как вычисление суммы платежа по ссуде, величину выплаты прибыли на вложения и др.

Функции Дата и время позволяют работать со значениями даты и времени в формулах. Например, можно использовать в формуле текущую дату, воспользовавшись функцией СЕГОДНЯ .

Рис. 90. Мастер функций

Математические функции выполняют простые и сложные математические вычисления, например вычисление суммы диапазона ячеек, абсолютной величины числа, округление чисел и др.

Статистические функции позволяют выполнять статистический анализ данных. Например, можно определить среднее значение и дисперсию по выборке и многое другое.

Функции работы с базами данных можно использовать для выполнения расчетов и для отбора записей по условию.

Текстовые функции предоставляют пользователю возможность обработки текста. Например, можно объединить несколько строк с помощью функции СЦЕПИТЬ .

Логические функции предназначены для проверки одного или нескольких условий. Например, функция ЕСЛИ позволяет определить, выполняется ли указанное условие, и возвращает одно значение, если условие истинно, и другое, если оно ложно.

Функции Проверка свойств и значений предназначены для определения данных, хранимых в ячейке. Эти функции проверяют значения в ячейке по условию и возвращают в зависимости от результата значения ИСТИНА или ЛОЖЬ .

Для вычислений в таблице с помощью встроенных функций рекомендуется использовать мастер функций. Диалоговое окно мастера функций доступно при выборе команды Функция в меню Вставка или нажатии кнопки, на стандартной панели инструментов. В процессе диалога с мастером требуется задать аргументы выбранной функции, для этого необходимо заполнить поля в диалоговом окне соответствующими значениями или адресами ячеек таблицы.

Упражнение

Вычисление величины среднего значения для каждой строки в файле Образование.хls.

  1. Выделите ячейку F3 и нажмите на кнопку мастера функций.
  2. В первом окне диалога мастера функций из категории Статистические выберите функцию СРЗНАЧ , нажмите на кнопку Далее .
  3. Во втором диалоговом окне мастера функций должны быть заданы аргументы. Курсор ввода находится в поле ввода первого аргумента. В это поле в качестве аргумента число! введите адрес диапазона B3:D3 (рис. 91).
  4. Нажмите ОК .
  5. Скопируйте полученную формулу в ячейки F4:F6 и сохраните файл (табл. 28).

Рис. 91. Ввод аргумента в мастере функций

Таблица 28. Таблица результатов расчета с помощью мастера функций

А В С D Е F
1 Распределение сотрудников по образованию
2 Магнолия Лилия Фиалка Всего Среднее
3 Высшее 25 20 9 54 18
4 Среднее спец. 28 23 21 72 24
8 ПТУ 27 58 20 105 35
в Другое 8 10 9 27 9
7 Всего 88 111 59 258 129

Для ввода диапазона ячеек в окно мастера функций можно мышью обвести на рабочем листе таблицы этот диапазон (в примере B3:D3). Если окно мастера функций закрывает нужные ячейки, можно передвинуть окно диалога. После выделения диапазона ячеек (B3:D3) вокруг него появится бегущая пунктирная рамка, а в поле аргумента автоматически появится адрес выделенного диапазона ячеек.

Проценты — удобная относительная мера, позволяющая оперировать с числами в привычном для человека формате не зависимо от размера самих чисел. Это своего рода масштаб, к которому можно привести любое число. Один процент — это одна сотая доля. Само слово процент происходит от латинского «pro centum», что означает «сотая доля».

Проценты незаменимы в страховании, финансовой сфере, в экономических расчетах. В процентах выражаются ставки налогов, доходность капиталовложений, плата за заемные денежные средства (например, кредиты банка), темпы роста экономики и многое другое.

1. Формула расчета доли в процентном отношении.

Пусть задано два числа: A 1 и A 2 . Надо определить, какую долю в процентном отношении составляет число A 1 от A 2 .

P = A 1 / A 2 * 100.

В финансовых расчетах часто пишут

P = A 1 / A 2 * 100%.

Пример. Какую долю в процентном отношении составляет 10 от 200

P = 10 / 200 * 100 = 5 (процентов).

2. Формула расчета процента от числа.

Пусть задано число A 2 . Надо вычислить число A 1 , составляющее заданный процент P от A 2 .

A 1 = A 2 * P / 100.

Пример. Банковский кредит 10 000 рублей под 5 процентов. Сумма процентов составит.

P = 10000 * 5 / 100 = 500.

3. Формула увеличения числа на заданный процент. Сумма с НДС.

Пусть задано число A 1 . Надо вычислить число A 2 , которое больше числа A 1 на заданный процент P. Используя формулу расчета процента от числа, получаем:

A 2 = A 1 + A 1 * P / 100.

A 2 = A 1 * (1 + P / 100).


Пример 1. Банковский кредит 10 000 рублей под 5 процентов. Общая сумма долга составит.

A 2 = 10000 * (1 + 5 / 100) = 10000 * 1.05 = 10500.


Пример 2. Сумма без НДС равна 1000 рублей, НДС 18 процентов. Сумма с НДС составляет:

A 2 = 1000 * (1 + 18 / 100) = 1000 * 1.18 = 1180.

style="center">

4. Формула уменьшения числа на заданный процент.

Пусть задано число A 1 . Надо вычислить число A 2 , которое меньше числа A 1 на заданный процент P. Используя формулу расчета процента от числа, получаем:

A 2 = A 1 - A 1 * P / 100.

A 2 = A 1 * (1 - P / 100).


Пример. Денежная сумма к выдаче за минусом подоходного налога (13 процентов). Пусть оклад составляет 10 000 рублей. Тогда сумма к выдаче составляет:

A 2 = 10000 * (1 - 13 / 100) = 10000 * 0.87 = 8700.

5. Формула вычисления исходной суммы. Сумма без НДС.

Пусть задано число A 1 , равное некоторому исходному числу A 2 с прибавленным процентом P. Надо вычислить число A 2 . Иными словами: знаем денежную сумму с НДС, надо вычислить сумму без НДС.

Обозначим p = P / 100, тогда:

A 1 = A 2 + p * A 2 .

A 1 = A 2 * (1 + p).

Тогда

A 2 = A 1 / (1 + p).


Пример. Сумма с НДС равна 1180 рублей, НДС 18 процентов. Стоимость без НДС составляет:

A 2 = 1180 / (1 + 0.18) = 1000.

style="center">

6. Расчет процентов на банковский депозит. Формула расчета простых процентов.

Если проценты на депозит начисляются один раз в конце срока депозита, то сумма процентов вычисляется по формуле простых процентов.

S = K + (K*P*d/D)/100
Sp = (K*P*d/D)/100

Где:
S — сумма банковского депозита с процентами,
Sp — сумма процентов (доход),
K — первоначальная сумма (капитал),

d — количество дней начисления процентов по привлеченному вкладу,
D — количество дней в календарном году (365 или 366).

Пример 1. Банком принят депозит в сумме 100 тыс. рублей сроком на 1 год по ставке 20 процентов.

S = 100000 + 100000*20*365/365/100 = 120000
Sp = 100000 * 20*365/365/100 = 20000

Пример 2. Банком принят депозит в сумме 100 тыс. рублей сроком на 30 дней по ставке 20 процентов.

S = 100000 + 100000*20*30/365/100 = 101643.84
Sp = 100000 * 20*30/365/100 = 1643.84

7. Расчет процентов на банковский депозит при начислении процента на процент. Формула расчета сложных процентов.

Если проценты на депозит начисляются несколько раз через равные промежутки времени и зачисляются во вклад, то сумма вклада с процентами вычисляется по формуле сложных процентов.

S = K * (1 + P*d/D/100) N

Где:


P — годовая процентная ставка,

При расчете сложных процентов проще вычислить общую сумму с процентами, а потом вычислить сумму процентов (доход):

Sp = S - K = K * (1 + P*d/D/100) N - K

Sp = K * ((1 + P*d/D/100) N - 1)

Пример 1. Принят депозит в сумме 100 тыс. рублей сроком на 90 дней по ставке 20 процентов годовых с начислением процентов каждые 30 дней.

S = 100000 * (1 + 20*30/365/100) 3 = 105 013.02
Sp = 100000 * ((1 + 20*30/365/100) N - 1) = 5 013.02


style="center">

Пример 2. Проверим формулу начисления сложных процентов для случая из предыдущего примера.

Разобьем срок депозита на 3 периода и рассчитаем начисление процентов для каждого периода, использую формулу простых процентов.

S 1 = 100000 + 100000*20*30/365/100 = 101643.84
Sp 1 = 100000 * 20*30/365/100 = 1643.84

S 2 = 101643.84 + 101643.84*20*30/365/100 = 103314.70
Sp 2 = 101643.84 * 20*30/365/100 = 1670.86

S 3 = 103314.70 + 103314.70*20*30/365/100 = 105013.02
Sp 3 = 103314.70 * 20*30/365/100 = 1698.32

Общая сумма процентов с учетом начисления процентов на проценты (сложные проценты)

Sp = Sp 1 + Sp 2 + Sp 3 = 5013.02

Таким образом, формула вычисления сложных процентов верна.

8. Еще одна формула сложных процентов.

Если процентная ставка дана не в годовом исчислении, а непосредственно для периода начисления, то формула сложных процентов выглядит так.


S = K * (1 + P/100) N

Где:
S — сумма депозита с процентами,
К — сумма депозита (капитал),
P — процентная ставка,
N — число периодов начисления процентов.

Пример. Принят депозит в сумме 100 тыс. рублей сроком на 3 месяца с ежемесячным начислением процентов по ставке 1.5 процента в месяц.

S = 100000 * (1 + 1.5/100) 3 = 104 567.84
Sp = 100000 * ((1 + 1.5/100) 3 - 1) = 4 567.84

Квартиль - одна из статистик, используемая при описании выборок (подробнее о различных статистиках см. ). В то время как медиана разделяет упорядоченный массив пополам, квартили разбивают набор данных на четыре части. Первый квартиль – это число, разделяющее выборку на две части: 25% элементов меньше, а 75% - больше значения первого квартиля. Третий квартиль - это число, разделяющее выборку также на две части: 75% элементов меньше, а 25% - больше третьего квартиля.

Рис. 1. 5-числовые сводки: М – медиана, Н1 и Н2 – сгибы (они же квартили)

Скачать заметку в формате или , примеры в формате (файл содержит код VBA).

Для расчета квартилей в Excel2007 и более ранних версиях использовалась функция КВАРТИЛЬ . Начиная с версии Excel2010 применяются две функции: КВАРТИЛЬ.ВКЛ и КВАРТИЛЬ.ИСКЛ (функция КВАРТИЛЬ оставлена для совмещения с более ранними версиями Excel; эта функция возвращает те же значения, что и КВАРТИЛЬ.ВКЛ). Эти две функции возвращают различные значения, но я нигде не нашел, какой алгоритм они используют при расчетах. Замечу, что для корректной работы функций данные можно не упорядочивать.

Изучение литературы показало, что в отличие от большинства других статистик, единодушия в методике расчета квартилей нет)) Я нашел упоминание о девяти различных подходах…

Начнем с метода Джона Тьюки , описанного им в, уже ставшем классическом, труде , изданном в 1977 г. Он начинает с введения трех сводок, характеризующих выборку: минимальное, максимальное значения и медиана. Далее он продолжает: «Если мы хотим добавить еще два числа, чтобы образовать 5-числовую сводку, то естественно определять их подсчетом до половины расстояния от каждого из концов к медиане. Процесс нахождения медианы, а затем и этих новых значений можно представить себе, как складывание листа бумаги. Поэтому эти новые значения естественно назвать сгибами» (англ. – hinge; рис. 1). Мы их называем квартилями.

Такие рисунки выглядят очень аккуратно, если число элементов выборки N = 4k + 1, например, 9, 13, 17… Но как быть, если в выборке 12 или 19 элементов? Наглядную картину представил Jon Peltier в серии заметок в своем блоге. Упорядочим элементы случайной выборки и разместим их над линейкой (рис. 2; случайная выборка, элементы которой упорядочены называется вариационным рядом). Серые числа под линейкой – индекс ряда (Джон зачем-то в качестве выборки – над линейкой – взял ряд целых чисел; наверное, чтобы запутать нас). Красное число над рядом – значение сводки; если оно дробное, значит полученное значение является интерполяцией между соседними значениями. Мы определяем медиану, как среднее значение набора данных, а первую квартиль – как медиану нижней половины данных.

Рис. 2. Инклюзивные квартили

Когда Джон Тьюки впервые предложил такой подход, он решил, что медиана (если число элементов в выборке нечетное) должна быть включена как в нижнюю (левую на рисунке), так и в верхнюю половинку данных при определении медиан этих половинок, то есть сгибов. Поэтому такой подход и называется инклюзивным (с включением).

Эксклюзивный подход. Некоторым статистикам не нравится, что медиана учитывается дважды. Они решили, что сгибы должны быть определены как медианы верхней и нижней половин набора данных, из которых срединное значение исключено (рис. 3). Такой взгляд отстаивали Moore и McCabe, или кратко M&M. Если набор данных содержит четное количество значений, инклюзивные и эксклюзивные квартили равны, так как нет элемента выборки (соответствующего центральной медиане), который можно было бы включить или исключить из рассмотрения. Для нечетного числа элементов, инклюзивные сгибы всегда ближе к медиане.

Рис. 3. Эксклюзивные квартили

Третий подход – компромисс между Тьюки и М&M – называется Эмпирическая функции распределения или Интегральная функция распределения (английская аббревиатура CDF ). В случае нечетного числа значений в наборе данных, следует включить или исключить медиану, ориентируясь на то, чтобы оставшиеся половинки содержали нечетное число элементов. Например, если в выборке 9 элементов, медиану следует включить, а при 11 элементах – исключить. В обоих случаях половинки будут содержать по 5 элементов. Преимущество этого компромисса заключается в том, что в качестве значения квартиля всегда получается один из элементов набора данных (а не среднее значение двух соседних элементов). CDF является методом по умолчанию в статистическом пакете SAS.

Все возможные случаи N. Мы не всегда можем изобразить данные в W-образной форме, как на рис. 1, поэтому удобнее пользоваться линейкой. В общем случае возможны четыре варианта по числу элементов в выборке: N = 4k, N = 4k + 1, N = 4k + 2, N = 4k + 3… и три подхода к расчету квартилей: Тьюки, M&M, CDF (рис. 4–7).

Рис. 4. Число элементов в выборке N = 4k; все три метода дают одинаковые значения квартилей

Рис. 5. Число элементов в выборке N = 4k + 1; M&M дает значения, отстоящие дальше от медианы

Рис. 6. Число элементов в выборке N = 4k + 2; все три метода дают одинаковые значения квартилей

Рис. 7. Число элементов в выборке N = 4k + 3

Методы интерполяции. Помимо трех описанных выше методов, применяют и целый ряд индексных алгоритмов. Мы рассмотрим три из них. Первый индекс во всех методах равен 0, а последний – N–1, N, N + 1. Например, для N=8 индексированные ряды представлены на рис. 8.

Положение перцентиля р – доля длины индексной линии, или р(N–1), рN, р(N+1), соответственно. р = 0,25 соответствует первому квартилю, а р = 0,75 – третьему. Ниже наглядно представлен расчет квартилей при различном числе элементов в выборке и трех методах интерполяции на основе N–1, N и N + 1 (рис. 9, 11–13). Обратите внимание, что рассчитанные числа (по формулам справа от линеек) являются не значениями квартилей, а значениями индексов квартилей. Над линейками показано значение квартилей для ряда значений {1, 2, 3, 4, 5, 6, 7, 8}.

Рис. 9. Число элементов в выборке N = 4k

Если, например, наша выборка {2, 3, 5, 8, 11, 12, 14, 17}, то расчет квартилей на основе N–1-метода даст индексы 1,75, 3,5 и 5,25, и значения квартилей 4,5, 9,5 и 12,5 (рис. 10).

Рис. 10. От индексов к значениям квартилей для N–1-метода и N = 4k

Рис. 11. Число элементов в выборке N = 4k + 1

Рис. 12. Число элементов в выборке N = 4k + 2

Рис. 13. Число элементов в выборке N = 4k + 3

Какой алгоритм считать стандартным для вычисления квартилей?

В 1996 году Роб Дж. Хиндман и Янан Фан опубликовали статью в American Statistician под названием Квантили выборок в статистических пакетах . В ней они рассматривали различные алгоритмы расчета квантилей (квартили – это частный случай квантилей). Их целью было указать методологию, которая могла бы стать стандартом для поставщиков статистического программного обеспечения, чтобы расчет квартилей не зависел от типа пакета. В статье они описали девять методов для расчета квантилей. Таблица показывает некоторые статистические пакеты и используемые в них алгоритмы (рис. 14; таблица, этот раздел заметки и код VBA ниже базируются на тексте с сайта Bacon Bits). Обратите внимание, что R и Maple применяют весь спектр алгоритмов.

Рис. 14. Алгоритмы, используемые в статистических пакетах

Кстати, Хиндман и Фан в завершении своей статьи рекомендовали метод 8 в качестве стандарта для статистических пакетов. По их мнению, этот метод оценки квантиля не зависит от распределения, что делает его наиболее приемлемым для расчета.

Расчет квартилей в Excel

Функция Excel КВАРТИЛЬ.ИСКЛ использует следующую формулу для расчета квартилей:

где Q p p -й квантиль: p = 0 – для минимального значения, 0,25 – для первого квартиля, 0,5 – для медианы, 0,75 – для третьего квартиля, 1 – для максимального значения;

x – индекс квантиля (может быть дробным); x = (n+1)p , где n – число элементов в выборке; обратите внимание на (n +1) , поэтому метод и называется N+1-интерполяция;

i – индекс элемента в упорядоченной выборке; самое большое целое всё еще меньшее, чем x ;

A 1 , A 2 , …, A i , A i +1 , …, A n – элементы случайной выборки, упорядоченной по возрастанию.

Формула для КВАРТИЛЬ.ВКЛ отличается только методом расчета х: x = (n-1)p+1 ; обратите внимание на (n –1) , поэтому метод называется N–1-интерполяция. Подробнее с работой формул можно ознакомиться в приложенном Excel-файле на листе Формулы .

Расчет квартилей в R и SAS

Функция quantile в R использует все девять алгоритмов расчета квантилей, в соответствии с нумерацией, предложенной Hyndman and Fan в работе 1996 г. (рис. 15; если вы не знакомы с R, рекомендую начать с ). Квантиль при i-м методе расчета:

Рис. 15. Расчет квартилей в R девятью способами

Расчет квартилей в Excel любым методом с помощью VBA

Ниже представлен код пользовательской функции, которая позволяет воспроизвести любой из шести методов, перечисленных в таблице на рис. 14. Даже если у вас Excel 2007, и вам недоступна функция КВАРТИЛЬ.ИСКЛ, вы сможете рассчитать квартиль шестым методом с помощью этой функции.

Function Quantile(MyRange As Range, p As Double, Optional m As Variant) "Mike Alexander: www.datapigtechnologies.com "Based on Code originally posted by Jerry W. Lewis (former Excel MVP) "********************************************************************* "This function will replicate various quantile calcuations found "in statistical software packages. "Calculation is determined by the Hyndman-Fan method used. "Hyndman-Fan Method 4 Replicates: "SAS(PCTLDEF=1), R(type=4), Maple(method=3) "Hyndman-Fan Method 5 Replicates: R(type=5), Maple(method=4) "Hyndman-Fan Method 6 Replicates: Excel(QUARTILE.EXC), SAS(PCTLDEF=4), "R(type=6), Minitab, SPSS, BMDP, JMP, Maple(method=5) "Hyndman-Fan Method 7 Replicates: Excel (QUARTILE and QUARTILE.INC), "R(type=7), S-Plus, Maxima, Maple(method=6) "Hyndman-Fan Method 8 Replicates: R(type=8), Maple(method=7) "Hyndman-Fan Method 9 Replicates: R(type=9), Maple(method=8) "********************************************************************** "Call function from Excel Spreadhseet by entering "=Quantile(Range, p, m) "Enter p as the fraction of the population "(.25 for quartile 1, .75 for quartile 3, etc....) "Enter m as the Hyndman-Fan Quantile method number (4, 5, 6, 7, 8 or 9) "If m is left blank, the function will use method 6 by default "********************************************************************** Dim n As Long Dim i As Long Dim QDef As Double Dim x As Double "Identify method and set the interpolation basis used Select Case m Case Is = 4 QDef = 0 Case Is = 5 QDef = 0.5 Case Is = 6 QDef = p Case Is = 7 QDef = 1 - p Case Is = 8 QDef = (p + 1) / 3 Case Is = 9 QDef = (p + 1.5) / 4 Case Else "Use Hyndman-Fan 6 by default QDef = p End Select "Count values within MyRange and calculate the required position index n = WorksheetFunction.Count(MyRange) x = n * p + QDef i = WorksheetFunction.Max(WorksheetFunction.Min(Fix(x), n), 1) "Perform interpolation and return answer If (x - i) >= 0 And i < n Then Quantile = (1 - (x - i)) * WorksheetFunction.Small(MyRange, i) + _ (x - i) * WorksheetFunction.Small(MyRange, i + 1) Else Quantile = WorksheetFunction.Small(MyRange, i) End If End Function

Function Quantile (MyRange As Range , p As Double , Optional m As Variant )

"Mike Alexander: www.datapigtechnologies.com

" Based on Code originally posted by Jerry W . Lewis (former Excel MVP )

"*********************************************************************

" This function will replicate various quantile calcuations found

"in statistical software packages.

" Calculation is determined by the Hyndman - Fan method used .

"Hyndman-Fan Method 4 Replicates:

" SAS (PCTLDEF = 1 ) , R (type = 4 ) , Maple (method = 3 )

"Hyndman-Fan Method 5 Replicates: R(type=5), Maple(method=4)

" Hyndman - Fan Method 6 Replicates : Excel (QUARTILE . EXC ) , SAS (PCTLDEF = 4 ) ,

"R(type=6), Minitab, SPSS, BMDP, JMP, Maple(method=5)

" Hyndman - Fan Method 7 Replicates : Excel (QUARTILE and QUARTILE . INC ) ,

"R(type=7), S-Plus, Maxima, Maple(method=6)

" Hyndman - Fan Method 8 Replicates : R (type = 8 ) , Maple (method = 7 )

"Hyndman-Fan Method 9 Replicates: R(type=9), Maple(method=8)

" * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

"Call function from Excel Spreadhseet by entering

" = Quantile (Range , p , m )

"Enter p as the fraction of the population

" (. 25 for quartile 1 , . 75 for quartile 3 , etc . . . . )

"Enter m as the Hyndman-Fan Quantile method number (4, 5, 6, 7, 8 or 9)

" If m is left blank , the function will use method 6 by default

"**********************************************************************

Dim n As Long

Dim i As Long

Dim QDef As Double

Dim x As Double

" Identify method and set the interpolation basis used

Select Case m

Case Is = 4

QDef = 0

Case Is = 5

QDef = 0.5

Case Is = 6

QDef = p

Case Is = 7

QDef = 1 - p

Case Is = 8

QDef = (p + 1 ) / 3

WorksheetFunction End Function

После того, как вставите код в стандартный модуль книги, вы сможете использовать функцию (рис. 16): =Quantile(MyRange; P; M), где MyRange – диапазон, включающий выборку (можно оставить его неупорядоченным); Р – статистика: 0 – минимум, 0,25 – 1-й квартиль, 0,5 – медиана, 0,75 – 3-й квартиль, 1 – максимум; возможно введение иных значений в диапазоне от 0 до 1; М – номер метода из таблицы на рис. 14.

Рис. 16. Синтаксис пользовательской функции Quantile

В таблице (рис. 17) приведен расчет квартилей по всем методам. Обратите внимание, как метод 8 (который Хиндман и Фан рекомендуют в качестве стандарта) вычисляет квартили, которые ложатся между значениями, вычисляемыми по методам 6 и 7. Действительно, метод 8 дает наиболее сбалансированный набор квартилей.

Рис. 17. Значения квартилей, вычисленные различными методами

Сравнение алгоритмов вычисления квартилей

Стандартом де-факто вычисления квартилей в статистических пакетах и Excel является метод 6 на основе N+1-интерполяции. Если вы хотите, чтобы ваши данные были одинаковыми при использовании различных инструментов, используйте именно этот метод. В Excel он лежит в основе работы функции КВАРТИЛЬ.ИСКЛ. К сожалению, этот метод приводит к увеличению межквартильного интервала. Для нашего примера (рис. 17) с 13,0 до 15,5. Если сравнить все пять методов расчета (рис. 18), то видно, что минимальный межквартильный интервал соответствует методу 7, а максимальный – методу 6. На что это влияет мы рассмотрим в заметке . Если же вы используете только Excel рекомендую метод 7 на основе N–1-интерполяции. Это позволит вам оперировать с самым узким межквартильным интервалом.

Рис. 18. Влияние алгоритма расчета квартилей на межквартильный интервал; цифры от 5 до 9 – номера методов

В процессе решения различного рода задач, как учебных, так и практических, пользователи нередко обращаются к программе Excel.

Электронные таблицы позволяет проводить анализ данных, строить диаграммы и графики, а также выполнять разнообразные вычисления. Одной из распространенных операций является вычисление процентов. Умение грамотно производить необходимые расчеты – полезный навык, который находит успешное применение практически во всех сферах жизни. Какие техники помогут посчитать проценты с помощью таблиц Excel?

Как посчитать проценты в Excel – основная формула расчета

Прежде, чем приступить к вычислению процентов, необходимо определиться с терминологией. Термин «процент» означает количество долей из всех 100 долей целого. Математическое определение процента – дробь, числитель которой определяет искомое количество частей, а знаменатель – общее. Результат умножается на 100 (т.к. целое – 100%). Работая с электронной таблицей, формула для определения процента выглядит следующим образом:

Часть/целое = Процент

От привычной в математике интерпретации отличает лишь отсутствие дальнейшего умножения на 100. Получить необходимый формат значения помогут свойства полей таблицы – достаточно активировать Процентный формат ячейки.

Пример 1

Перед вами ряд данных, внесенных, например, в колонку D (D2, D3, D4, D5, …). Необходимо рассчитать, 5% от каждого значения.

  • Активируете соседнюю с первым значением (или любую другую) ячейку – в ней будет располагаться результат вычислений.
  • В ячейке E2 записываете выражение «=D2/100*5» или «=D2*5%».
  • Жмете Enter.
  • «Протяните» ячейку E2 на необходимое число строк. Благодаря маркеру автозаполнения по указанной выше формуле будет произведен расчет и для остальных значений.

Пример 2

Перед вами находятся 2 колонки значений – например, реализованные пирожные (D2, D3, D4, D5, …) и общее количество выпечки (E2, E3, E4, E5, …) каждого вида. Необходимо определить, какая часть продукции реализована.

  • В ячейке, где будет рассчитан результат (например, F) записываете выражение «=D2/E2».
  • Жмете Enter и «протягиваете» ячейку на необходимое число строк. Использование маркера автозаполнения позволит применить данную формулу для всех последующих ячеек и произвести верные расчеты.
  • Для перевода результата в формат процентов выделите необходимые ячейки и воспользуйтесь командой Percent Style. Для активации последней можно кликнуть правой клавишей мыши и выбрать в появившемся перечне пункт «Формат ячеек» – «Процентный». При этом вы указываете желаемое число десятичных знаков. Или же перейдите в раздел «Главная» – «Число» и выберите вид «Процентный».


Как посчитать проценты в Excel – процент от суммы

Для вычисления доли каждой части относительно общей суммы используйте выражение «=A2/$A$10», где A2 – интересующее значение, общая сумма указана в ячейке A10. Как быть, если интересующая вас позиция встречается в таблице несколько раз? В таком случае воспользуйтесь функцией SUMIF (СУММЕСЛИ) с параметрами:

SUMIF(range,criteria,sum_range)/total

СУММЕСЛИ(диапазон;критерий;диапазон_суммирования)/общая сумма

  • Перемещаетесь в ячейку, где будет получен результат.
  • Записываете выражение «=СУММЕСЛИ(C2:C10;F1;D2:D10)/$D$14» (или =SUMIF (C2:C10;F1;D2:D10)/$D$14), где

C2:C10, D2:D10 – диапазоны значений, в пределах которых происходят вычисления,

F1 – ячейка, в которой указана исследуемая характеристика,

D14 – ячейка, в которой рассчитана сумма.


Как посчитать проценты в Excel – изменение в процентах

Необходимость в таких вычислениях часто возникает в ходе оценки прироста или убыли по результатам деятельности. Итак, объемы продаж по категориям продукции за 2015г. внесены в колонку D, аналогичные данные за 2016г. – в колонку E. Необходимо определить на сколько процентов увеличился или уменьшился объем продаж.

  • В ячейке F2 указываете формулу «=(E2-D2)/D2».
  • Переводите данные ячейки в формат Процентный.
  • Для вычисления прироста или убыли для остальных категорий (ячеек), протяните F2 на необходимое количество строк.
  • Оцениваете результат. Если значение положительное – вы имеете прирост, если отрицательное – убыль.