Ядерные силы и их свойства. Ядерные силы: свойства

Из факта существования ядер следует, что между нуклонами ядра действуют специфические ядерные силы несводимые к электромагнитным силам. Ядерные силы обладают следующими свойствами.

1.Ядерные силы короткодействующие. Они экспоненциально убывают с расстоянием Радиус взаимодействия нуклонов меньше см и связан с массой частицы переносчика взаимодействия (пи-мезоном).

2.Ядерные силы являются силами притяжения и на расстояниях в 1 ферми в раз больше кулоновских сил отталкивания протонов в ядре. Это следует из положительного значения энергии связи ядра и существования дейтрона. Энергия кулоновского отталкивания двух протонов

Удельная энергия связи нуклона в ядре гелия приблизительно 7 Мэв .

3.Ядерные силы имеют нецентральный (тензорный) характер, т.е. зависят от взаимного расположения нуклонов. Это следует из наличия у дейтрона электрического квадрупольного момента.

4. Потенциал ядерных сил зависит от взаимной ориентации спинов взаимодействующих частиц и их спинов. На это указывают опыты по рассеянию медленных нейтронов на молекулярном водороде.

5. Ядерные силы обладают свойством насыщения. Каждый нуклон взаимодействует только с ограниченным числом ближайших к нему нуклонов. Это следует из того, что энергия связи пропорциональна числу нуклонов А . Если бы каждый нуклон взаимодействовал со всеми остальными, тогда было бы E св ~А 2 .

6.Ядерные силы обладают свойством зарядовой независимости (изотопической инвариантности). Взаимодействие двух протонов, двух нейтронов, нейтрона с протоном в одинаковых квантовых пространственных и спиновых состояниях одинаково, если исключить кулоновское взаимодействие. Об этом свидетельствуют эксперименты по рассеянию (n ,p ) и (p,p ), а также реакции с образованием двух нейтронов в конечных состояниях. в зеркальных ядрах (при замене всех протонов на нейтроны) все свойства почти одинаковы.

7.Ядерные силы имеют обменный характер. Нуклоны взаимодействуя обмениваются координатами, спинами. и зарядами. π-мезон является квантом ядерного взаимодействия при низких энергиях.

8.Большая интенсивность и отталкивательный характер ядерных сил при очень малых расстояниях () следует из наличия внутри нуклонов массивных заряженных частиц (кварков).

9. Экспериментально наблюдается спин-орбитальная зависимость ядерных сил.

10.Наблюдается существенная зависимость ядерных сил от величины изотопического спина Т (1или 0) при энергиях нуклонов меньше 1 Гэв , и независимость от изоспина при энергиях больше 10 Гэв .

11. Общий характер (n,p ) и (p,p )- рассеяния при высоких энергиях больших 100 Мэв приводит к заключению о существовании очень сильного отталкивания нуклонов на расстояниях меньших 0,5 10 -13 см , обменном характере ядерных сил, и спин-орбитальной зависимости ядерных сил(нецентральный тензорный характер ядерных сил следует из фазового анализа (p,p )- рассеяния).

1.3.1 . Ядро любого атома имеет сложную структуру и состоит из час-тиц, называемых нуклонами. Известно два типа нуклонов - протоны и нейтроны .
Протоны - нуклоны массой 1 а.е.м. с положительным зарядом, равным единице, то есть элементарному заряду электрона.
Нейтроны - электронейтральные нуклоны массой 1 а.е.м.
*) Строго говоря, массы покоя протонов и нейтронов несколько от-личаются: m р = 1.6726 . 10 -24 г , а m n = 1.67439 . 10 -24 г . Об этом различии речь впереди.

1.3.2. Так как масса ядра практически равна A, заряд ядра - z, а массы протона и нейтрона практически равны, при таких представлениях следует принять как должное, что ядро электронейтрального устойчивого атома состоит из z протонов и ( A - z) нейтронов. Следовательно, атом-ный номер элемента - есть не что иное как протонный заряд ядра атома, выраженный в элементарных зарядах электрона. Другими словами, z - это число протонов в ядре атома.


1.3.3 . Наличие в ядре протонов (частиц с электрическим зарядом од-ного знака) вследствие кулоновских сил отталкивания между ними должно было бы привести к разлёту нуклонов. В реальности этого не происходит. Существование в природе множества устойчивых ядер приводит к выводу о существовании между нуклонами ядра более мощных, чем кулоновы, ядерных сил притяжения , которые, преодолевая кулоновское отталкивание протонов, стягивают нуклоны в устойчивую структуру - ядро.

1.3.4. Размеры ядер атомов, определенные по формуле (1.4), есть величины порядка 10 -13 см. Отсюда первое свойство ядерных сил (в отли-чие от кулоновых, гравитационных и других) - короткодействие: ядерные силы действуют только на малых расстояниях, сравнимых по порядку величины с размерами самих нуклонов.
Даже не зная точно, что за материальное образование представляет собой протон или нейтрон, можно оценить их эффективные размеры как ди-аметр сферы, на поверхности которой ядерное притяжение двух соседних протонов уравновешивается их кулоновским отталкиванием. Эксперименты на ускорителях по рассеянию ядрами электронов позволили оце-нить эффективный радиус нуклона R н ≈ 1.21 . 10 -13 см.

1.3.5 . Из короткодействия ядерных сил вытекает второе их свойс-тво, кратко именуемое насыщением . Это означает, что любой нуклон ядра взаимодействует не со всеми другими нуклонами, а лишь с ограниченным числом нуклонов, являющихся его непосредственными соседями.


1.3.6. Третье свойство ядерных сил - их равнодействие. Поскольку предполагается, что силы взаимодействия между нуклонами обоих видов являются силами одной природы, то тем самым постулируется, что на равных расстояниях по-рядка 10 -13 см два протона, два нейтрона или протон с нейтроном взаимо-действуют одинаково.


1.3.7. Протон в свободном состоянии (то есть вне атомных ядер) стабилен . Нейтрон в свободном состоянии длительно существовать не мо-жет: он претерпевает распад на протон, электрон и антинейтрино с пери-одом полураспада T 1/2 = 11.2 мин. по схеме:
o n 1 → 1 p 1 + - 1 e + n
*) Антинейтрино (n) - электронейтральная частица материи с нулевой массой покоя.

1.3.8. Итак, любое ядро считается полностью индивидуализирован-ным , если известны две его основные характеристики - число протонов z и массовое число A, поскольку разница (A - z) определяет число нейтро-нов в ядре. Индивидуализированные ядра атомов принято в общем случае называть нуклидами .
Среди множества нуклидов (а их в настоящее время известно более 2000 - естественных и искусственных) есть такие, у которых одна из двух упомянутых характеристик одинакова, а другая - отличается по величине.
Нуклиды с одинаковым z (числом протонов) называют изотопами . Пос-кольку атомный номер определяет в соответствии с Периодическим Зако-ном Д.И.Менделеева индивидуальность только химических свойств атома элемента, об изотопах всегда говорят со ссылкой на соответству-ющий химический элемент в Периодической Системе.
Например, 233 U, 234 U, 235 U, 236 U, 238 U, 239 U - все это изотопы урана, который в Периодической Системе элементов имеет порядковый номер z = 92.
Изотопы любого химического элемента , как видим, имеют равное чис-ло протонов, но различные числа нейтронов.

Нуклиды равной массы ( A), но с различными зарядами z называют изобарами . Изобары, в отличие от изотопов, - нуклиды различных хими-ческих элементов.
Примеры . 11 В 5 и 11 С 4 - изобары нуклидов бора и углерода; 7 Li 3 и 7 Ве 4 - изобары нуклидов лития и бериллия; 135 J 53 , 135 Xe 54 и 135 Cs 55 - также являются изобарами йода, ксенона и цезия соответственно.

1.3.9 . Из формулы (1.4) можно оценить плотность нуклонов в яд-рах и массовую плотность ядерного вещества. Считая ядро сферой с ради-усом R и с количеством нуклонов в ее объёме, равным A, число нуклонов в единице объёма ядра найдём как:
N н = A/V я = 3А/4pR 3 = 3А/4p(1.21 . 10 -13 A 1/3) 3 = 1.348 . 10 38 нукл/см 3 ,
а, так как масса одного нуклона равна 1 а.е.м. = 1.66056 . 10 -24 г , то плотность ядерного вещества найдётся как:
γ яв = Nm н = 1.348 . 10 38 .1.66056 . 10 -24 ≈ 2.238 . 10 14 г/см 3 .= 223 800 000 т/см 3
Порядок приведенного расчёта свидетельствует о том, что плотность ядерного вещества одинакова в ядрах всех химических элементов.
Объём. приходящийся на 1 нуклон в ядре, V я /A = 1/N = 1/1.348 . 10 38 = 7.421 . 10 -39 см 3
- также одинаков для всех ядер, поэтому среднее расстояние между центрами соседних нуклонов в любом ядре (которое можно условно назвать средним диаметром нуклона) будет равно
D н = (V я) 1/3 = (7.421 . 10 -39) 1/3 = 1.951 . 10 -13 см .

1.3.10. О плотности расположения протонов и нейтронов в ядре ато-ма до настоящего времени мало что известно. Поскольку протоны, в отли-чие от нейтронов, подвержены действию не только ядерного и гравитаци-онного притяжения, но и кулоновского отталкивания, можно предположить, что протонный заряд ядра более или менее равномерно распределен по его поверхности.

В конце обучения многие старшеклассники, их родители и тысячи молодых специалистов стоят перед сложным выбором - выбором высшего учебного заведения (ВУЗа). Сориентироваться и не растеряться в многообразии университетов, институтов и факультетов достаточно сложно. Читайте отзывы о ВУЗе, оставленные студентами, преподавателями, выпускниками, перед тем как получить . Правильный выбор учебного заведения - залог успеха в будущей карьере!

В физике понятием «сила» обозначают меру взаимодействия материальных образований между собой, включая взаимодействия частей вещества (макроскопических тел, элементарных частиц) друг с другом и с физическими полями (электромагнитным, гравитационным). Всего известно четыре типа взаимодействия в природе: сильное, слабое, электромагнитное и гравитационное, и каждому соответствует свой вид сил. Первому из них отвечают ядерные силы, действующие внутри атомных ядер.

Что объединяет ядра?

Общеизвестно, что ядро атома является крошечным, его размер на четыре-пять десятичных порядков меньше размера самого атома. В связи с этим возникает очевидный вопрос: почему оно настолько мало? Ведь атомы, состоящие из крошечных частиц, все же гораздо больше, чем частицы, которые они содержат.

Напротив, ядра не сильно отличаются по размеру от нуклонов (протонов и нейтронов), из которых они сделаны. Есть ли причина этому или это случайность?

Между тем, известно, что именно электрические силы удерживают отрицательно заряженные электроны вблизи атомных ядер. Какая же сила или силы удерживают частицы ядра вместе? Эту задачу выполняют ядерные силы, являющиеся мерой сильных взаимодействий.

Сильное ядерное взаимодействие

Если бы в природе были только гравитационные и электрические силы, т.е. те, с которыми мы сталкиваемся в повседневной жизни, то атомные ядра, состоящие зачастую из множества положительно заряженных протонов, были бы нестабильны: электрические силы, толкающие протоны друг от друга будут во много миллионов раз сильнее, чем любые гравитационные силы, притягивающие их друг к другу. Ядерные силы обеспечивают притяжение еще более сильное, чем электрическое отталкивание, хотя лишь тень их истинной величины проявляется в структуре ядра. Когда мы изучаем строение самих протонов и нейтронов, то видим истинные возможности того явления, которое известно как сильное ядерное взаимодействие. Ядерные силы есть его проявление.

На рисунке выше показано, что двумя противоположными силами в ядре являются электрическое отталкивание между положительно заряженными протонами и сила ядерного взаимодействия, которая притягивает протоны (и нейтроны) вместе. Если число протонов и нейтронов не слишком отличается, то вторые силы превосходят первые.

Протоны - аналоги атомов, а ядра - аналоги молекул?

Между какими частицами действуют ядерные силы? Прежде всего между нуклонами (протонами и нейтронами) в ядре. В конце концов они действуют и между частицами (кварками, глюонами, антикварками) внутри протона или нейтрона. Это неудивительно, когда мы признаем, что протоны и нейтроны являются внутренне сложными.

В атоме крошечные ядра и еще более мелкие электроны находятся относительно далеко друг от друга по сравнению с их размерами, а электрические силы, удерживающие их в атоме, действуют довольно просто. Но в молекулах расстояние между атомами сравнимо с размерами атомов, так что внутренняя сложность последних вступает в игру. Разнообразная и сложная ситуация, вызванная частичной компенсацией внутриатомных электрических сил, порождает процессы, в которых электроны могут на самом деле перейти от одного атома к другому. Это делает физику молекул гораздо богаче и сложнее, чем у атомов. Аналогичным образом и расстояние между протонами и нейтронами в ядре сопоставимо с их размерами - и также, как и с молекулами, свойства ядерных сил, удерживающих ядра вместе, намного сложнее, чем простое притяжение протонов и нейтронов.

Нет ядра без нейтрона, кроме как у водорода

Известно, что ядра некоторых химических элементов стабильны, а у других они непрерывно распадаются, причем диапазон скоростей этого распада весьма широк. Почему же прекращают свое действие силы, удерживающие нуклоны в ядрах? Давайте посмотрим, что мы можем узнать из простых соображений о том, какие имеются свойства ядерных сил.

Одно из них то, что все ядра, за исключением наиболее распространенного изотопа водорода (который имеет только один протон), содержат нейтроны; то есть нет ядра с несколькими протонами, которые не содержат нейтронов (см. рис. ниже). Итак, ясно, что нейтроны играют важную роль в оказании помощи протонам держаться вместе.

На рис. выше показаны легкие стабильные или почти устойчивые ядра вместе с нейтроном. Последний, как и тритий, показаны пунктиром, указывающим, что они в конечном итоге распадаются. Другие комбинации с малым числом протонов и нейтронов не образуют ядра вовсе, либо образуют чрезвычайно нестабильные ядра. Кроме того, показаны курсивом альтернативные названия, часто даваемые некоторым из этих объектов; Например, ядро гелия-4 часто называют α-частицей, название, данное ему, когда оно было первоначально обнаружено в первых исследованиях радиоактивности в 1890 годах.

Нейтроны в роли пастухов протонов

Наоборот, нет ядра, сделанного только из нейтронов без протонов; большинство легких ядер, таких как кислорода и кремния, имеют примерно то же самое число нейтронов и протонов (рисунок 2). Большие ядра с большими массами, как у золота и радия, имеют несколько больше нейтронов, чем протонов.

Это говорит о двух вещах:

1. Не только нейтроны необходимы, чтобы протоны держались вместе, но и протоны нужны, чтобы удержать нейтроны тоже вместе.

2. Если количество протонов и нейтронов становится очень большим, то электрическое отталкивание протонов должно быть скомпенсировано добавлением нескольких дополнительных нейтронов.

Последнее утверждение проиллюстрировано на рисунке ниже.

На рисунке выше показаны стабильные и почти устойчивые атомные ядра как функция P (числа протонов) и N (числа нейтронов). Линия, показанная черными точками обозначает стабильные ядра. Любое смещение от черной линии вверх или вниз означает уменьшение жизни ядер - вблизи нее срок жизни ядер составляет миллионы лет или более, по мере удаления внутрь синей, коричневой или желтой областей (разные цвета соответствует разным механизмам ядерного распада) время их жизни становится все короче, вплоть до долей секунды.

Обратите внимание, что стабильные ядра имеют P и N, примерно равные для малых P и N, но N постепенно становится больше, чем P более чем в полтора раза. Отметим также, что группа стабильных и долгоживущих нестабильных ядер остается в достаточно узкой полосе для всех значений P вплоть до 82. При большем их числе известные ядра в принципе являются нестабильными (хотя и могут существовать миллионы лет). По-видимому, отмеченный выше механизм стабилизации протонов в ядрах за счет добавления к ним нейтронов в этой области не имеет стопроцентной эффективности.

Как размер атома зависит от массы его электронов

Как же влияют рассматриваемые силы на строение атомного ядра? Ядерные силы влияют прежде всего на его размер. Почему же все-таки ядра так малы по сравнению с атомами? Чтобы выяснить это, давайте начнем с простейшего ядра, которое имеет как протон, так и нейтрон: это второй наиболее распространенной изотоп водорода, атом которого содержит один электрон (как и все изотопы водорода) и ядро из одного протона и одного нейтрона. Этот изотоп часто называют "дейтерий", а его ядро (см. рисунок 2) иногда называют "дейтрон." Как мы можем объяснить, что держит дейтрон вместе? Ну, можно представить себе, что он не так уж отличается от атома обычного водорода, который также содержит две частицы (протон и электрон).

На рис. выше показано, что в атоме водорода ядро ​​и электрон очень далеки друг от друга, в том смысле, что атом гораздо больше, чем ядро (а электрон еще меньше.) Но в дейтроне расстояние между протоном и нейтроном сравнимо с их размерами. Это отчасти объясняет, почему ядерные силы являются гораздо более сложными, чем силы в атоме.

Известно, что электроны имеют небольшую массу по сравнению с протонами и нейтронами. Отсюда следует, что

  • масса атома, по существу близка к массе его ядра,
  • размер атома (по существу размер электронного облака) обратно пропорционален массе электронов и обратно пропорционален общей электромагнитной силе; принцип неопределенности квантовой механики играет решающую роль.

А если ядерные силы аналогичны электромагнитным

Что же с дейтроном? Он так же, как и атом, сделан из двух объектов, но они почти одинаковой массы (массы нейтрона и протона отличаются лишь части примерно на одну 1500-ю часть), так что обе частицы в равной степени важны в определении массы дейтрона и его размера. Теперь предположим, что ядерная сила тянет протон к нейтрону так же, как электромагнитные силы (это не совсем так, но представьте себе, на мгновение); а затем, по аналогии с водородом, мы ожидаем, размер дейтрона обратно пропорциональным массе протона или нейтрона, и обратно пропорциональным величине ядерной силе. Если ее величина была такой же (на определенном расстоянии), как у электромагнитной силы, то это будет означать, что так как протон примерно в 1850 раз тяжелее электрон, то дейтрон (и действительно любое ядро) должно быть по крайней мере в тысячу раз меньше, чем у водорода.

Что дает учет существенной разницы ядерных и электромагнитных сил

Но мы уже догадались, что ядерная сила намного больше электромагнитной (на том же расстоянии), потому что, если это не так, она была бы не в состоянии предотвратить электромагнитное отталкивание между протонами вплоть до распада ядра. Так что протон и нейтрон под ее действием сближаются вместе еще более плотно. И поэтому не удивительно, что дейтрон и другие ядер не просто в одну тысячу, но в сто тысяч раз меньше, чем атомы! Опять же, это только потому, что

  • протоны и нейтроны почти в 2000 раз тяжелее, чем электроны,
  • на этих расстояниях, большая ядерная сила между протонами и нейтронами в ядре во много раз больше, чем соответствующие электромагнитные силы (в том числе электромагнитного отталкивания между протонами в ядре.)

Эта наивная догадка дает примерно правильный ответ! Но это не полностью отражает сложность взаимодействия между протоном и нейтроном. Одна из очевидных проблем состоит в том, что сила, подобная электромагнитной, но с большей притягивающей или отталкивающей способностью, должна очевидно проявляться в повседневной жизни, но мы не наблюдаем ничего подобного. Так что, что-то в этой силе должно отличаться от электрических сил.

Короткий диапазон ядерной силы

Что их отличает, так это то, что удерживающие от распада атомное ядро ядерные силы являются очень важными и большими для протонов и нейтронов, находящихся на очень коротком расстоянии друг от друга, но на определенном расстоянии (так называемом "диапазоне" силы), они падают очень быстро, гораздо быстрее, чем электромагнитные. Диапазон, оказывается, может также быть размером с умеренно большое ядро, только в несколько раз больше, чем протон. Если поместить протон и нейтрон на расстоянии, сравнимом с этим диапазоном, они будут притягиваться друг к другу и образуют дейтон; если их разнести на большее расстояние, они едва ли будут ощущать какое-либо притяжение вообще. На самом деле, если их поместить слишком близко друг к другу, так, что они начнут перекрываться, то они будут на самом деле отталкиваются друг от друга. В этом и проявляется сложность такого понятия, как ядерные силы. Физика продолжает непрерывно развиваться в направлении объяснения механизма их действия.

Физический механизм ядерного взаимодействия

У всякого материального процесса, включая и взаимодействие между нуклонами, должны быть материальные же переносчики. Ими являются кванты ядерного поля - пи-мезоны (пионы), из-за обмена которыми и возникает притяжение между нуклонами.

Согласно принципам квантовой механики, пи-мезоны, то и дело возникая и тут же исчезая, образуют вокруг «голого» нуклона что-то вроде облака, называемого мезонной шубой (вспомните об электронных облаках в атомах). Когда два нуклона, окруженные такими шубами, оказываются на расстоянии порядка 10 -15 м, происходит обмен пионами подобно обмену валентными электронами в атомах при образовании молекул, и между нуклонами возникает притяжение.

Если же расстояния между нуклонами становятся меньше 0,7∙10 -15 м, то они начинают обмениваться новыми частицами - т.наз. ω и ρ-мезонами, вследствие чего между нуклонами возникает не притяжение, а отталкивание.

Ядерные силы: строение ядра от простейшего к большему

Резюмируя все вышесказанное, можно отметить:

  • сильное ядерное взаимодействие гораздо, гораздо слабее, чем электромагнетизм на расстояниях, значительно больших, чем размер типичного ядра, так что мы не сталкиваемся с ним в повседневной жизни; но
  • на коротких расстояниях, сравнимых с ядром, оно становится гораздо сильнее - сила притяжения (при условии, что расстояние не слишком короткое), способна преодолеть электрическое отталкивание между протонами.

Итак, эта сила имеет значение только на расстояниях, сравнимых с размерами ядра. На рисунке ниже показан вид ее зависимости от расстояния между нуклонами.

Большие ядра удерживаются вместе с помощью более или менее той же силы, что держит дейтрон вместе, но детали процесса усложняются, так что их непросто описать. Они также не в полной мере понятны. Хотя основные очертания физики ядра были хорошо изучены в течение десятилетий, многие важные детали все еще активно исследуются.

Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы , не сводящиеся ни к одному из типов сил, известных в классической физике (гравитационных и электромагнитных).

Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10 –15 м. Длина (1,5 – 2,2)·10 –15 м называется радиусом действия ядерных сил.

Ядерные силы обнаруживают зарядовую независимость : притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов – протонного или нейтронного. Зарядовая независимость ядерных сил видна из сравнения энергий связи зеркальных ядер . Так называются ядра , в которых одинаково общее число нуклонов , но число протонов в одном равно числу нейтронов другом . Например, ядра гелия и тяжелого водорода – трития . Энергии связи этих ядер составляют 7,72 МэВ и 8,49 МэВ.

Разность энергий связи ядер, равная 0,77 МэВ, соответствует энергии кулоновского отталкивания двух протонов в ядре . Полагая эту величину равной , можно найти, что среднее расстояние r между протонами в ядре равно 1,9·10 –15 м, что согласуется с величиной радиуса ядерных сил.

Ядерные силы обладают свойством насыщения , которое проявляется в том , что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов . Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел A . Практически полное насыщение ядерных сил достигается у α-частицы, которая является очень устойчивым образованием.

Ядерные силы зависят от ориентации спинов взаимодействующих нуклонов . Это подтверждается различным характером рассеяния нейтронов молекулами орто- и параводорода. В молекуле ортоводорода спины обоих протонов параллельны друг другу, а в молекуле параводорода они антипараллельны. Опыты показали, что рассеяние нейтронов на параводороде в 30 раз превышает рассеяние на ортоводороде. Ядерные силы не являются центральными.

Итак, перечислим общие свойства ядерных сил :

· малый радиус действия ядерных сил (R ~ 1 Фм);

· большая величина ядерного потенциала U ~ 50 МэВ;

· зависимость ядерных сил от спинов взаимодействующих частиц;

· тензорный характер взаимодействия нуклонов;

· ядерные силы зависят от взаимной ориентации спинового и орбитального моментов нуклона (спин-орбитальные силы);

· ядерное взаимодействие обладает свойством насыщения;

· зарядовая независимость ядерных сил;

· обменный характер ядерного взаимодействия;

· притяжение между нуклонами на больших расстояниях (r > 1 Фм), сменяется отталкиванием на малых (r < 0,5 Фм).

в заимодействие между нуклонами возникает в результате испускания и поглощения квантов ядерного поля π-мезонов . Они определяют ядерное поле по аналогии с электромагнитным полем, которое возникает как следствие обмена фотонами. Взаимодействие между нуклонами, возникающее в результате обмена квантами массы m , приводит к появлению потенциала U я (r ):

.

Для просмотра демонстраций щелкните по соответствующей гиперссылке:

Ядерные силы (англ. Nuclear forces) являются силами взаимодействия нуклонов в атомном ядре. Они стремительно убывают с ростом расстояния междунуклонами и становятся практически незаметными на расстояниях выше 10 -12 см.

С точки зрения полевой теории элементарных частиц ядерные силы, в основном, являются силами взаимодействия магнитных полей нуклонов в ближней зоне. На больших расстояниях потенциальная энергия такого взаимодействия убывает по закону 1/r 3 - этим объясняется их короткодействующий характер. На расстоянии (3 ∙10 -13 см) ядерные силы становятся доминирующими, а на расстояниях менее (9,1 ∙10 -14 см) они превращаются в еще более мощные силы отталкивания. График потенциальной энергии взаимодействия электрического и магнитного полей двух протонов демонстрирующий наличие ядерных сил приведен на рисунке.

Протон - протонные, протон - нейтронные и нейтрон - нейтронные взаимодействия будут несколько отличаться поскольку структура магнитных полей протона инейтрона разная.

Существует несколько, основных свойств ядерных сил.

1. Ядерные силы - силы притяжения.

2. Ядерные силы являются коротко действующими. Их действие проявляется только на расстояниях примерно 10-15 м.

При увеличении расстояния между нуклонам я ядерные силы быстро уменьшаются до нуля, а при расстояниях, меньших их радиуса действия ((1,5 2,2) 1 0 ~15 м),-оказываются примерно в 100 раз больше кулоновских сил, действующих между протонами на том же расстоянии.

3. Ядерные силы проявляют зарядовую независимость: притяжение между двумя нуклонами постоянно и не зависит от зарядового состояния нуклонов (протонного или нейтронного). Это означает, что ядерные силы имеют неэлектронную природу.

Зарядовая независимость ядерных сил видна из сравнения энергий связи в зеркальных ядрах. Так называются ядра, в которых одинаково общее число нуклонов, это число протонов в одном равно числу нейтронов в другом.

4. Ядерные силы обладают свойством насыщения, то есть каждый нуклон в ядре взаимодействует только с ограниченным числом ближайших к нему нуклонов. Насыщение проявляется в том, что удельная энергия связи нуклонов в ядре при увеличении числа нуклонов остается постоянной. Практически полное насыщение ядерных сил достигается у а-частицы, которая является очень устойчивой.

5. Ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов.

6. Ядерные силы не являются центральными, то есть не действуют по линии, соединяющей центры взаимодействующих нуклонов.

Сложность и неоднозначный характер ядерных сил, а также трудность точного решения уравнений движения всех нуклонов ядра (ядро с массовым числом А представляет собой систему из А тел, не позволили разработать до сегодняшнего дня единую стройную теорию атомного ядра.

35. Радиоактивный распад. Закон радиоактивного превращения.

Радиоакти́вный распа́д (от лат. radius «луч» и āctīvus «действенный») - спонтанное изменение состава нестабильных атомных ядер (заряда Z,массового числа A) путём испускания элементарных частиц или ядерных фрагментов . Процесс радиоактивного распада также называютрадиоакти́вностью , а соответствующие элементы радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.

Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и многие более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, таких как индий, калий или кальций, часть природных изотопов стабильны, другие же радиоактивны).

Естественная радиоактивность - самопроизвольный распад ядер элементов, встречающихся в природе.

Искусственная радиоактивность - самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующиеядерные реакции.

акон радиоактивного распада - физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце. Открыт Фредериком Содди и Эрнестом Резерфордом,

Сперва закон был сформулирован так :

Во всех случаях, когда отделяли один из радиоактивных продуктов и исследовали его активность независимо от радиоактивности вещества, из которого он образовался, было обнаружено, что активность при всех исследованиях уменьшается со временем по закону геометрической прогрессии.

из чего с помощью теоремы Бернулли учёные сделали вывод [ источник не указан 321 день ] :

Скорость превращения всё время пропорциональна количеству систем, еще не подвергнувшихся превращению.

Существует несколько формулировок закона, например, в виде дифференциального уравнения:

которое означает, что число распадов , произошедшее за короткий интервал времени , пропорциональнo числу атомов в образце .